Influencia de estabilizantes en la calidad fisicoqumica y sensorial del jarabe de pltano/maracuy

 

Influence of stabilizers on the physicochemical and sensory quality of banana/passion fruit syrup

 

Influncia de estabilizantes na qualidade fsico-qumica e sensorial de calda de banana/maracuj

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Correspondencia: tmontoya1@utmachala.edu.ec

 

 

Ciencias Tcnica y Aplicadas

Artculo de Investigacin

* Recibido: 17 de junio de 2023 *Aceptado: 22 de julio de 2023 * Publicado: 13 de agosto de 2023

 

  1. Ingeniera en Alimentos, Universidad Tcnica de Machala, Machala, Ecuador.
  2. Ingeniera en Industrias Agropecuarias, Mster en Gestin de la Calidad Alimentaria, Universidad Tcnica de Machala, Machala, Ecuador.
  3. Ingeniero en Alimentos, Gestin de la Calidad y Seguridad Alimentaria, Universidad Tcnica de Machala, Machala, Ecuador.
  4. Ingeniero en Industrias Agropecuarias, Master of Science in Environmental Protection and Agricultural Food Production, Universidad Tcnica de Machala, Universidad del Pas Vasco, Ecuador.

Resumen

El objetivo de esta investigacin fue evaluar la influencia de la variedad de fruta y el tipo de estabilizadores en las caractersticas fisicoqumicas y sensoriales del jarabe de banano y maracuy. Se estudiaron las caractersticas fsicas y qumicas de las materias primas, incluyendo las variedades de frutas Cavendish Valery y Gros Michel, y los estabilizadores goma xantn y carboximetilcelulosa (CMC). Para determinar las diferencias estadsticas, se utiliz un diseo factorial 22. Las variables de respuesta fueron Brix, viscosidad y aceptacin del consumidor. Se realiz un anlisis de varianza multifactorial para determinar el grado de los efectos sobre las variables de respuesta. Una vez obtenidos los resultados del anlisis estadstico, se llevaron a cabo pruebas fisicoqumicas en la formulacin determinada como la mejor. Los resultados de las pruebas fueron 2,18% de ceniza, 64,30 Brix, 0,37% de acidez (en trminos de cido ctrico), 4,04 de pH, 29,01% de humedad, 1,27 de densidad relativa, 23,7% de azcares reductores totales, 11,9% de fructosa, 11,8% de glucosa, 35,4% de sacarosa, 5405,2 cp de viscosidad y 400-470 nm en cuanto al color. La viscosidad no se vio afectada por el tipo de estabilizador o la variedad de pltano, sin embargo, el estabilizador utilizado influye en los grados Brix.

Palabras claves: Influencia; estabilizantes; fisicoqumica; pltano/maracuy.

 

Abstract

The objective of this research was to evaluate the influence of the variety of fruit and the type of stabilizers on the physicochemical and sensory characteristics of banana and passion fruit syrup. The physical and chemical characteristics of the raw materials were studied, including the Cavendish Valery and Gros Michel fruit varieties, and the stabilizers xanthan gum and carboxymethylcellulose (CMC). To determine the statistical differences, a 22 factorial design was used. The response variables were Brix, viscosity and consumer acceptance. A multivariate analysis of variance was performed to determine the degree of effects on the response variables. Once the results of the statistical analysis were obtained, physicochemical tests were carried out on the formulation determined to be the best. The test results were 2.18% ash, 64.30 Brix, 0.37% acidity (in terms of citric acid), 4.04 pH, 29.01% moisture, 1.27 relative density, 23.7% total reducing sugars, 11.9% fructose, 11.8% glucose, 35.4% sucrose, 5405.2 cp viscosity, and 400-470 nm for color. The viscosity was not affected by the type of stabilizer or the variety of banana, however, the stabilizer used influences the Brix degrees.

Keywords: Influence; stabilizers; physical chemistry; banana/passion fruit

 

Resumo

O objetivo desta pesquisa foi avaliar a influncia da variedade da fruta e do tipo de estabilizantes nas caractersticas fsico-qumicas e sensoriais de banana e calda de maracuj. Foram estudadas as caractersticas fsicas e qumicas das matrias-primas, incluindo as variedades de frutas Cavendish Valery e Gros Michel, e os estabilizantes goma xantana e carboximetilcelulose (CMC). Para determinar as diferenas estatsticas, foi utilizado um planejamento fatorial 22. As variveis ​​de resposta foram Brix, viscosidade e aceitao do consumidor. Uma anlise multivariada de varincia foi realizada para determinar o grau de efeitos nas variveis ​​de resposta. Obtidos os resultados da anlise estatstica, foram realizados testes fsico-qumicos na formulao considerada a melhor. Os resultados do teste foram 2,18% de cinzas, 64,30 Brix, 0,37% de acidez (em termos de cido ctrico), 4,04 pH, 29,01% de umidade, 1,27 de densidade relativa, 23,7% de acares redutores totais, 11,9% de frutose, 11,8% de glicose, 35,4% sacarose, viscosidade de 5405,2 cp e 400-470 nm para cor. A viscosidade no foi afetada pelo tipo de estabilizante e nem pela variedade de banana, entretanto, o estabilizante utilizado influencia nos graus Brix.

Palavras-chave: Influncia; estabilizadores; qumica Fsica; banana/ maracuj.

Introduction

Syrups are sweet condiment sauces obtained, generally, by dissolving sugar in boiling water and adding flavoring agents (Bellaera et al., 2018). Syrups are commonly used in confectionery, bakery fillings, and the production of fizz drinks (Manzocco, 2002). Ingredients commonly found in syrup formulations include water, sugar, colorants, acidulants, preservatives, and stabilizers. Fruit juice can also be used as a base for manufacturing syrups by removing the water content partially through heat treatments concentrating the sugar content to around 65% - 90% and increasing their viscosity (Zargaraan et al., 2016). Some fruits such as Ecuadorian bananas are suitable ingredients for syrups since when reaching ripeness stages, pleasant flavors and desirable organoleptic characteristics rise. Regarding their nutritional properties, bananas provide considerable amounts of magnesium, iron, phosphorus, calcium, potassium, vitamin B, and vitamin C. Banana cultivation is a significant factor in the Ecuadorian economy; circa 196,673 hectares are dedicated to banana plantations, of which 186,225 hectares are currently exploited (Criollo Feijo et al., 2020; Seraquive, 2017). The production of surpluses of lower commercial value is a common issue, although their nutritional value remains intact (Bonilla-Leiva & Gonzlez-Carbajal, 2000). Around 30% of organic dessert bananas is rejected (Criollo Feijo et al., 2020). Organic bananas are prone to be rejected for export as they usually do not comply with the requirements established in the Ecuadorian standard NTE INEN 2801-2013 due to cultivation and production practices (Medranda & Soledispa, 2019). Other fruit with an interesting cultivation profile is Passion fruit, a common source in the production of juices and concentrated pulps. Weather conditions in Ecuador are favorable to enhance the production and industrialization of Passion fruit (Tigrero Gonzlez et al., 2016). Local germplasms of Passion fruit (Criollo variety) are grown in farms and reach a 7t ha−1 yield. On average, an individual Passion fruit weighs 93 g and the thickness of its peel is around 5 mm (Viera et al., 2022). Alongside fruits, some stabilizers, including certain hydrocolloids, provide desired characteristics to syrups; among these, gums are polymers that form viscous dispersions during gelation when mixed with water at certain proportion, depending on the gum (Quiroz et al., 2019). Gums are used in the food industry to modify the rheology of food systems, i.e., their flow behavior, viscosity, and solid features, while modifying certain sensory characteristics (Angioloni, 2013); in the case of innovative formulations to manufacture syrups, these features need to be proven. The objective of this work is to study the influence of the type of banana (Musa paradisiaca) and the type of stabilizer (gum) in the characteristics of syrups including Passion fruit (Passiflora edulis) to determine the best combination of factors resulting in the best final product.

 

Methodology

Preparation of raw materials

Non-exportable bananas were sourced from an organic farm in Tenguel, Guayas province, Ecuador. Two varieties of bananas, Cavendish Valery and Gros Michel, were used. Bananas at ripeness stage 6-7, at a ripeness index and peeling color described in the von Loesecke scale (Torres et al. 2012; Torres et al., 2013) were selected. The passion fruits were obtained from a farm in Camilo Ponce Enrquez, Azuay, Ecuador. The bananas were washed and disinfected by soaking in a quaternary ammonium solution (1.5 ppm) for 5 minutes, then were peeled, chopped, and blended. Passion fruits were cut transversely to extract their pulp which was sieved to separate the juice from the seeds.

 

Characterization of raw materials

The ash content of bananas of the 2 varieties studied, as well as in Passion fruit, was determined after AOAC 942.05/90 method. The moisture content in samples of each fruit was determined via thermogravimetry (Arrzola-Paternina et al., 2013). The determination of soluble solids was carried out in 10 g of banana pulp (for each variety) and 10 mL of Passion fruit juice, respectively, with a a digital refractometer HI 96801 (Hanna Instruments, Woonsocket, Rhode Island, United States) according to the AOAC 932.12/90 method (Arrzola-Paternina et al., 2013; Quiceno et al., 2014). The pH determination was carried out in the filtered blended mixture of 30 g of banana and 90 mL of distilled water for 2 minutes was used; in the case of Passion fruit, 75 g of juice was utilized. The pH value on each case was measured in triplicate with a multiparametric potentiometer 900P (Bante Instruments Co., Ltd., Shanghai, China) (Arrzola-Paternina et al., 2013). The titratable acidity was determined after AOAC 942.15. For banana, 30 g of a blended sample of banana were mixed with 90 mL of distilled water; this mixture was filtered after 20 minutes of stand, then 25 mL of distilled water was added. For the passion fruit, a 50 mL of pure juice sample was prepared. The samples were titrated with NaOH 0.1 N; phenolphthalein was used as an indicator (Martnez-Hernndez & Bermdez-Camacho, 2016). All tests were performed in triplicate.

 

Product formulation

A preliminary formulation, developed and used in this study to evaluate the characteristics of the resulting product, is outlined in Table 1. The parameters here depicted as banana and stabilizer change accordingly to the factor evaluated in the resulted treatment.

 

Table 1. Banana/passion fruit working formulation.

Ingredients

Percentage (%)

Water

Banana

Sugar

Passion fruit

Stabilizer

Preservative

Citric acid

40

40

15.16

4.24

0.4

0.1

0.1

 

Experimental design

A factorial design was employed to observe the influence of banana variety and stabilizer type on the physicochemical attributes of syrups. The statistical analysis was carried out using Statgraphics Centurion XVI.II (Statgraphics Technologies, Inc., The Plains, United States) statistical package. A multifactorial analysis was performed with one replicate. The experimental design and corresponding treatments are summarized in Table 2. The response variables evaluated were sensory acceptance, viscosity, and soluble solids content. The syrups were prepared following the method outlined by Duarte-Gonzales et al. (2018).

 

Table 2. Variables studied and levels proposed in syrup formulations.

Variables or factors

Levels

Banana type

Cavendish Valery

Gros Michel

Stabilizer type

Carboxymethylcellulose (CMC)

Xanthan gum

 

Sensory evaluation

To determine the optimal formulation, a sensory evaluation was conducted on the four resulting formulations and their respective replicates, which resulted in a total of eight trials. The panel of evaluators consisted of 20 semi-trained judges of different ages and genders. A quantitative analysis was performed to assess the sensory acceptance of the formulations using a 5-point verbal hedonic scale, ranging from 5 (I like it very much) to 1 (I dislike it very much), as described by Hernndez (2005). The panelists were instructed to provide feedback on their level of satisfaction with the product evaluated.

 

Physicochemical evaluation of syrups

Soluble solids in the syrups were quantified using refractometric techniques. The viscosity of each treatment was determined using a dial reading viscometer (Brookfield, Middleboro, United States) at 20 rpm and 21C. The results were reported in Pa.s and subsequently converted to centipoises (10-3 Pa-s). Ash content was determined according to the Mexican standard NMX-F-066-S (1978) by calcination in a furnace at 550 C. Upon complete calcination, the crucible was allowed to cool down and the final weights were recorded. The acidity percentage was determined via titration with NaOH 0.1 N following the method described by Periago et al. (2016). The amount of reducing sugars was determined by high-performance liquid chromatography (HPLC), following the method described by Guerra & Ortega (2006) and Periago et al. (2016). 1 g of sample was dissolved in distilled water and filtered through 0.2 mm filter paper. The filtrate was then injected into the HPLC aminospheri column (220 mm x 4.6 mm). An acetonitrile mobile phase containing 0.01% tetraethylene-pentamine and water (70:30, v/v) was used to elute the sample, starting at a flow rate of 1.5 mL/min. The results were obtained from the refractive index detector integrated control system. Color patterns of the passion fruit-banana syrups were measured using UV-visible spectrophotometry, which measures the interaction of molecules or atoms with electromagnetic radiation, with the wavelength ranges extending into the infrared region (Barba lvarez & Naranjo de la Vera, 2021). Sensory analysis was performed using a combination of profile and categorical scale tests to determine the best formulation among the samples. Sensory acceptance was assessed using a multifactorial ANOVA to detect significant differences in the sensory response of the panelists. A 3-point scale was used to score the samples, where the sensory acceptance was represented as 1 (low), 2 (moderate), and 3 (high).

 

Results

The results obtained for the chemical parameters evaluated in both banana species, Gros Michel and Cavendish Valery, are presented in Table 2. The chemical parameters found for Passion fruit are shown in Table 3.

 

 

Table 2 Results of the chemical analysis in Cavendish Valery and Gros Michel

Parameters

Results

 

Cavendish Valery

Gros Michel

Ashes (%)

Soluble solids (Brix)

Acidity (% malic acid)

pH

Moisture content (%)

Ripeness index

0.6600.003

21.800.216

0.3070.014

5.220.049

72.670.063

71.010.052

0.760.029

21.530.478

0,3050,003

5.36 0.047

73.440.032

70.590.013

 

Table 3 Chemical analysis in passion fruit

Parameters

Results

Ashes (%)

Soluble solids (Brix)

Acidity (% citric acid)

pH

Moisture content (%)

Ripeness index

0.7600.003

13.260.097

0.570.017

3.440.049

83.580.035

6.030.005

 

Table 4. Treatments resulted from the factorial design applied according to the variable used and their respective levels.

Banana type

Stabilizer

Viscosity (cP)

Brix

Cavendish Valery

Gros Michel

Cavendish Valery

Gros Michel

Cavendish Valery

Gros Michel

Cavendish Valery

Gros Michel

CMC

CMC

GX

GX

GX

GX

CMC

CMC

5553.7

5557.1

5748.6

5754.2

4890.9

5650.9

5418.8

5467.9

65.3

65.0

59.7

63.7

59.9

62.9

64.9

65.3

Table 5. Analysis of variance for viscosity

Source

Sum of squares

Degrees of freedom

Medium square

F-ratio

P-value

A: Stabilizer type

277.30

1

277.30

0.00

0.96

B: Banana type

83661

1

83661.0

0.93

0.38

Residues

449801

5

89960.3

 

 

TOTAL (corrected)

533740

 

 

 

 

 

Table 6. Analysis of variance for Brix.

Source

Sum of squares

Degrees of freedom

Medium square

F-ratio

P-value

A: Stabilizer type

6.30

1

6.30

4.91

0.078

B: Banana type

25.56

1

25.56

19.92

0.007

Residues

6.42

5

1.28

 

 

TOTAL (corrected)

38.28

 

 

 

 

 

Table 7 Multiple range tests for Brix by stabilizer type (LSD)

Contrast

Sig.

Difference

+/- Limits

CMC GX

*

3.575

2.05908

*Indicates a significant difference.

 

Table 8. Analysis of variance for score by code

Source

Sum of squares

Degrees of freedom

Medium square

F-ratio

P-value

Between groups

20.755

7

2.965

3.76

0.0008

Intra groups

151.6

192

0.789583

 

 

TOTAL (corrected)

172.355

 

 

 

 

 

Table 9. Multiple Range Tests for score per code

Contrast

Sig.

Difference

+/- Limits

1972 - 1972-2

1972 - 1980

1972 - 1980-2

1972 - 1997

1972 - 1997-2

1972 - 2003

1972 - 2003-2

1972-2 - 1980

1972-2 - 1980-2

1972-2 - 1997

1972-2 - 1997-2

1972-2 - 2003

1972-2 - 2003-2

1980 - 1980-2

1980 - 1997

1980 - 1997-2

1980 - 2003

1980 - 2003-2

1980-2 - 1997

1980-2 - 1997-2

1980-2 - 2003

1980-2 - 2003-2

1997 - 1997-2

1997 - 2003

1997 - 2003-2

1997-2 - 2003

1997-2 - 2003-2

2003 - 2003-2

-

-

-

*

-

-

-

-

-

*

*

-

-

-

*

*

-

-

*

*

-

-

-

*

*

*

-

-

-0.24

-0.28

-0.28

0.64

0.4

-0.2

-0.08

-0.04

-0.04

0.88

0.64

0.04

0.16

0

0.92

0.68

0.08

0.2

0.92

0.68

0.08

0.2

-0.24

-0.84

-0.72

-0.6

-0.48

0.12

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

0.495723

*Indicates a significant difference.

 

Table 10. Physicochemical parameters evaluated in the syrups.

Parameters

Results

Ashes

Soluble solids (Brix)

Acidity (% citric acid)

pH

Moisture

Density

Viscosity

Color

Reducing sugars

2,18 0,07

64,30 0.04

0,37 0,09

4,04 0,02

29,01 0,16

1,27 0,02

5405.2 cp

400-470 nm

23,7% (of which: fructose, 11.9%; glucose, 11.8%; lactose: < 0.1%; sucrose: 35.4%)

 

Discussion

Table 2 presents the ash content percentages for the Cavendish Valery and Gros Michel banana varieties. These percentages are comparable to those reported by Lpez-Calvo et al. (2011) but differ from those reported by Martnez-Cardozo et al. (2016) reporting 2.5%. The percentage of soluble solids (22.2%) is similar to that presented by Arrieta et al. (2006). Other authors, such as Campuzano et al. (2010), reported lower values ranging from 16-20 Brix, while Barrera et al. (2010) reported higher values of 26 Brix compared to the findings of this study. The acidity, expressed in malic acid, was 0.307% for both varieties, and this value is comparable to that expressed by Campuzano et al. (2010) (0.25%). However, it differs from those reported by Barrera et al. (2010) (0.54%) and Ciro-Velsquez et al. (2005) of 0.60%. Table 2 presents the percentage of ash in Cavendish Valery and Gros Michel varieties, which are similar to those reported by Lpez-Calvo et al. (2011) but differ from those reported by Martnez-Cardozo et al. (2016) of 2.5%. The percentage of soluble solids is comparable to that presented by Arrieta et al. (2006) of 22.2%, although other authors, such as Campuzano et al. (2010), report lower values (16-20 Brix), while Barrera et al. (2010) report higher values (26 Brix) than those found in this study. The acidity, expressed in malic acid, of 0.307% in both varieties is comparable to that expressed by Campuzano et al. (2010) of 0.25%, but differs from that reported by Barrera et al. (2010) (0.54) and Ciro-Velsquez et al. (2005) of 0.60%. The pH values of the two varieties are similar to those reported by Ciro-Velsquez et al. (2005) of 6%, Campuzano et al. (2010) of 5.20%, and Barrera et al. (2010) of 5.3%, while higher than those reported by Aurore et al. (2009) of 4.20%, Pimentel et al. (2010) of 4.13%, and Arrieta et al. (2006) of 4.6%. Moisture values in the banana pulp of the two varieties are higher than those reported by Lucas-A et al. (2013) (58.1%) and comparable to that described by Campuzano et al. (2010) (76%). These variations may be attributed to climatic conditions, soil composition, sample preparation, ripening stages, and physiological and biochemical processes subjected to fruit genetics. As the fruit ripens, the carbohydrate content increases due to the conversion of starch to sucrose and glucose which, in turn, raises the Brix content and the amount of water, increasing its humidity, and lowers the acidity due to the respiration process (Torres et al., 2015). The color of the peel of the raw materials used in the study corresponds to a color index of 6-7 according to the Von Loesecke scale. The sugar/acid ratio used to calculate the ripening indexes of passion fruit juice were around 71. The ash content was approximately 0.76%, which is lower than the value reported by Martinez et al. (2017) of 1%. The percentage of soluble solids was similar to that presented by Lpez et al. (2017) of 13.76%; other studies such as Aular & Rodriguez (2003), Cruz et al. (2010), and Martinez et al. (2017) reported higher values. The acidity, expressed in citric acid, was 0.57%, comparable to that reported by Lpez et al. (2017), but differed from Aular & Rodriguez (2003) and Cruz et al. (2010). The pH value obtained was similar to that reported by Lpez et al. (2017), but differed from Aular & Rodriguez (2003), Cruz et al. (2010), and Martnez et al. (2017). The moisture content in Passion fruit juice was 72.24%, similar to that reported by Martinez et al. (2017). These variations may be due to the physiological activity during ripening, as well as the altitude, ambient temperature, growing soils, and genetics of the plant species, as reported by previous studies.

Multiple range tests (Table 9) indicated that the formulation containing Gros Michel and Carboxymethylcellulose did not show statistically significant differences between its original and its replica at a 95.0% confidence level compared to the other samples. Additionally, this formulation obtained the highest means. The physicochemical parameters of the best syrup formulation containing banana Gros Michel and Carboxymethylcellulose were evaluated in this study, the percentage of ash fell within the range (0.03-2.7%) reported by Bonilla-Leiva & Gonzalez-Carbajal, (2000), exceeded the maximum limit of 1% established by Buenao-Hernndez (2017) and met the requirements of NMX-F-169, (1984) (0-3%). The percentage of soluble solids (Brix) was within the range (58-64) reported by several authors, including Rivera-Rodrguez et al., (2005) and Luis et al. (2021), and coincided with the Peruvian standard RMN 684-2005/MINSA (59). The acidity content of 0.27% was similar to the value reported by Rivera-Rodrguez et al., (2005) and lower than that reported by Rondn et al., (2019). The pH value complied with NMX-F-169, (1984) (min. 3) and was within the range reported by Bonilla-Leiva & Gonzalez-Carbajal, (2000) and Rivera-Rodrguez et al., (2005). The moisture content was similar to the value reported by Vargas-Daz et al., (2019b) and within the range reported by Mellado-Mojica & Lpez-Prez, (2013), while it was lower than that reported by Espndola Sotres et al., (2018) and Buenao-Hernndez, (2017). The color of the sample was a mixture of yellow and orange. The viscosity was measured in the Brookfield viscometer, and the values obtained were higher than those reported by Valenzuela, (2010) for sucrose syrup with coffee pulp. The reducing sugar content was fructose (46.9%), glucose (45.2%), and sucrose (6.1%), as reported by Bonilla-Leiva & Gonzalez-Carbajal, (2000), while Nieblas-Morfa et al., (2017) and Huiman-Arroyo and Luna-Jer (2014) reported fructose (38.9%), glucose (6.2%), and sucrose (0.3%) for sisal syrup, and for agave, fructose (69.7%), glucose (28.08%), and sucrose (1.4%) were reported.

 

Conclusions

The Gros Michel species is an ideal raw material for banana syrup production due to its relevant contents of soluble solids and organic acids. Additionally, Passion fruit proved to be a suitable ingredient for use in the formulation. The statistical analysis of the chemical evaluation showed that the type of stabilizer used did not significantly impact viscosity, although it affected the soluble solids content. The physicochemical analysis of the formulation of banana syrup with Passion fruit juice (consisting in 40% water, 40% banana, 15.16% sugar, 4.24%, Passion fruit, 0.4% stabilizer, 0.1% preservatives, and 0.1% citric acid) resulted in 2.18% ash, 64.30% soluble solids, 0.37% acidity, a pH value of 4.04, 29.01% moisture, 1.27 g.cm-3 density, 23.7% total reducing sugars, 5405.2 cp viscosity, and color ranging from yellow to orange (400-470 nm). The sensory evaluation described the product as highly sweet, viscous, and possessing a typical banana aroma. These findings suggest that the syrup obtained can be used as a substitute for conventional sugar in desserts, ice cream, and other applications with commercial potentials.

 

References

  1. Angioloni, A. (2013). Los hidrocoloides, aditivos de alta funcionalidad. Tecnifood: La revista de la tecnologa alimentaria, 2, 97-99.
  2. Arrazola-Paternina, G.S., Barrera-Violeth, J.L., Villalba-Cadavid, M.I. (2013). Determinacin fsica y bromatolgica de la guanbana cimarrona (Annona glabra L.) del departamento de Crdoba. Orinoquia, 17(2), 159-166.
  3. Arrieta, A.J., Baquero, U.M., Barrera, J.L. (2006). Caracterizacin fisicoqumica del proceso de maduracin del pltano Papocho (Musa ABB Simmonds). Agronoma Colombiana24(1), 48-53.
  4. Aular, J., Rodrguez, Y. (2003). Algunas caractersticas fsicas y qumicas del fruto de cuatro especies de passiflora. Bioagro15(1), 41-46.
  5. Aurore, G., Parfait, B., Fahrasmane, L. (2009). Bananas, raw materials for making processed food products. Trends in Food Science & Technology20(2), 78-91.
  6. Barba lvarez, N.E., & Naranjo de la Vera, R.C. (2021). Cuantificacin espectrofotomtrica UV-VIS de Tartrazina E-102 en bebidas refrescantes no carbonatadas sabor a naranja en supermercados de la ciudad de Guayaquil (Bachellors thesis, Universidad de Guayaquil. Facultad de Ciencias Qumicas).
  7. Barrera, J. L., Arrazola, G. S., Cayn, D. G. (2010). Caracterizacin fisicoqumica y fisiolgica del proceso de maduracin de pltano Hartn (Musa AAB Simmonds) en dos sistemas de produccin. Acta Agronmica59(1), 20-29.
  8. Bellaera, F.A., Hammerschmidt, J., Sanz, J., Zaccarello, D.B., Beccio, B. (2018). Jarabe de maz de alta fructosa, sus implicancias en la salud y la informacin disponible en el rotulado de los alimentos. Revista Nutricin Investiga, 126-163.
  9. Bonilla Leiva, A.R., Gonzlez Carvajal, A. (200). Evaluacin de dos sistemas enzimticos como fuente de invertasa para elaborar jarabe rico en fructuosa a partir del banano. Reviteca 7(1), 1-7.
  10. Buenao Hernndez, K.A. (2017). Elaboracin de jarabe de tamarindo con la utilizacin de edulcorantes naturales en reemplazo del azcar convencional (Bachelors thesis, Escuela Superior Politcnica de Chimborazo).
  11. Campuzano, A., Cornejo, F., Ruiz, O., Peralta, E. (2010). Efecto del tipo de produccin de banano cavendish en su comportamiento poscosecha. Revista Tecnolgica ESPOL RTE, 23(2), 41-48.
  12. Ciro Velsquez, H.J., Montoya Lpez, M.L., Milln Cardona, L.J. (2005). Caracterizacin de propiedades mecnicas del banano (Cavendish Valery). Revista Facultad Nacional de Agronoma Medelln58(2), 2975-2988.
  13. Criollo-Feijo, J., Garca-Gonzlez, C.A., Ayala-Armijos, J.H., Martnez-Mora, E.O., Cuenca-Mayorga, F.P. (2020). Physical and mechanical properties of edible films made from non-exportable Ecuadorian bananas. Revista de Cincias Agroveterinrias19(4), 386-391.
  14. De la Cruz, J., Vargas, M., Del Angel, O., Garca, H.S. (2010). Estudio de las caractersticas sensoriales, fisicoqumicas y fisiolgicas en fresco y durante el almacenamiento refrigerado de maracuy amarillo (Passiflora edulis sims var. flavicarpa. degener), para tres cultivares de Veracruz Mxico. Revista Iberoamericana de Tecnologa Postcosecha11(2), 130-142.
  15. Duarte Gonzales, K. E., Garca Medina, S. B., & Castelln Ruiz, T. M. (2018). Elaboracin de uva confitada deshidratada y sirope de uva de la variedad (Michele Palieri), cultivada en el municipio de Palacagina-Madriz (Bachelora thesis, Universidad Nacional Autnoma de Nicaragua).
  16. Espndola-Sotres, V., Andrea, T. M. M., Adela, L.V.A., Ramrez-Ortiz, M.E. (2018). Estandarizacin del proceso de elaboracin de jarabe a partir de aguamiel. Investigacin y Desarrollo en Ciencia y Tecnologa Alimentaria3, 515-21.
  17. Hernndez, E. (2005). Evaluacin sensorial. Bogot, DC. Centro Nacional de Medios para el Aprendizaje.
  18. Huiman-Arroyo, V., Luna-Jer, D. (2014). Proyecto de instalacin de una planta elaboradora de jarabe de yacn. Ingeniera Industrial, (032), 151-172.
  19. Calvo, A.L., Crdoba, M.E.M., Soliva, A.H. (2004). Estudio comparativo de la produccin de etanol va fermentativa utilizando cuatro sustratos preparados a partir de banano maduro. Ingeniera14(1-2), 67-77.
  20. Guerra, M., Ortega, G. (2006). Separacin, caracterizacin estructural y cuantificacin de antocianinas mediante mtodos qumicofsicos. Parte I. ICIDCA. Sobre los Derivados de la Caa de Azcar, 40 (2). 35-44.
  21. Lpez, A.L., Matute, N.L., Echavarra, A.P. (2018). Evaluacin fisicoqumica y capacidad antioxidante de moringa (Moringa olefera) y maracuy (Passiflora edulis). Cumbres4(1), 35-42.
  22. Luis, G., Rubio, C., Gutirrez, A.J., Hernndez, C., Gonzlez-Weller, D., Revert, C., Castilla, A., Abreu, P., Hardisson, A. (2012). Palm tree syrup; nutritional composition of a natural edulcorant. Nutricion Hospitalaria 27(2), 548-552.
  23. Lucas, J.C., Quintero, V.D., Vasco Leal, J.F., Mosquera, J.D. (2012). Evaluacin de los parmetros de calidad de chips en relacin con diferentes variedades de pltano (Musa paradisiaca L.). Revista Lasallista de investigacin9(2), 65-74.
  24. Manzocco, L., Nicoli, M.C. (2002). Food design: from the methodological approach to the case study of low-calorie syrups. Trends in Food Science & Technology, 13(12), 422429.
  25. Martnez, O., Abraham, M., Gmez, A. (2017). Propiedades fisicoqumicas y nutracuticas de dos genotipos de maracuy (passiflora edulis var. flavicarpa) procedentes de dos regiones de Mxico. Investigacin y desarrollo en tecnologa de alimentos2, 249-255.
  26. Martnez-Cardozo, C., Cayn-Salinas, G., Ligarreto-Moreno, G. (2016). Composicin qumica y distribucin de materia seca del fruto en genotipos de pltano y banano. Ciencia y Tecnologa Agropecuaria17(2), 217-227.
  27. Martnez Hernndez, C.M., Bermdez Camacho, T.D.L.C. (2016). Caracterizacin de algunas propiedades fsico-mecnicas y qumicas en el banano (Musa spp.). Centro Agrcola43(3), 46-55.
  28. Medranda, J., Soledispa, P. (2019). Produccin de Harina de Banano Orgnico y Comercializacin hacia Espaa. (Bachelors thesis, Universidad Catlica Santiago Guayaquil).
  29. Mellado-Mojica, E., Lpez-Prez, M.G. (2013). Anlisis comparativo entre jarabe de agave azul (Agave tequilana Weber var. azul) y otros jarabes naturales. Agrociencia47(3), 233-244.
  30. Nieblas-Morfa, C., Gallardo Aguilar, I., Rodrguez Rodrguez, L., Sarra-Quesada, F., Batista de Almeida, J., Prez Pentn, M. (2017). Obtencin de jarabes glucosados por hidrlisis enzimtica empleando almidn de sorgo CIAPR-132. Afinidad. Journal of Chemical Engineering Theoretical and Applied Chemistry 74 (580), 292 298.
  31. NMX-F-066-S. (1978). Determinacin de cenizas en alimentos. Normas Mexicanas. Direccin General de Normas.
  32. NMX-F-169. (1984). Alimentos - Jarabes. Normas Mexicanas. Direccin General de Normas.
  33. INEN, N. (2019). 2801.(2013). Norma para el Banano (Pltano). CODEX STAN, 205-1997.

 

  1. Periago, M. J., Navarro-Gonzlez, I., Alaminos, A.B., Elvira-Torales, L.I., Garca-Alonso, F.J. (2016). Paramtros de calidad en mieles de diferentes orgenes botnicos producidas en la alpujarra granadina. Anales de Veterinaria de Murcia, 71(32), 59-71.
  2. Pimentel, R.M.D.A., Guimares, F.N., Santos, V.M.D., Resende, J.C.F.D. (2010). Qualidade ps-colheita dos gentipos de banana PA42-44 e Prata-An cultivados no norte de Minas Gerais. Revista Brasileira de Fruticultura32, 407-413.
  3. Quiceno, M.C., Giraldo, G.A., Villamizar, R.H. (2014). Caracterizacin fisicoqumica del pltano (Musa paradisiaca sp. AAB, Simmonds) para la industrializacin. UGciencia20(1), 48-54.
  4. Quiroz, M. F. (2019). Efecto de la adicin de goma xanthan y almidn de maz en los atributos de textura en pur de pavo. (Bachelors thesis, Escuela Agrcola Panamericana Zamorano).
  5. Rivera-Rodrguez, M., Herrera-Ramrez, C., & Barquero-Quirs, M. (2005). Caracterizacin fisicoqumica de los siropes comerciales preparados a base de sacarosa. Tecnologa en Marcha, 18(4), 48 - 54.
  6. RMN 684 (2005). Norma sanitaria aplicable a los azcares y jarabes destinados al consumo humano MINSA.
  7. Rondn, M., Pino, J.A., Roncal, E. (2019). Desarrollo de un saborizante en pasta de pia con adicin de jugo concentrado. Ciencia y Tecnologa de los Alimentos, 29(1), 42-47.
  8. Seraquive Carrillo, M. J. (2017). Caracterizacin del manejo poscosecha y cuantificacin de las prdidas de banano (Musa Acuminata) orgnico en Los Ros (Bachelors thesis, Universidad de las Amricas, Ecuador).
  9. Tigrero Gonzlez, F., Lovato Torres, S., Quimi Reyes, F. (2016). Estudio de factibilidad de procesadora de derivados de maracuy. Una alternativa de desarrollo en Santa Elena, Ecuador. Ciencia UNEMI, 9(17), 21-35.
  10. Torres, R., Andrade, R., Tirado, D., Acevedo, D. (2015). Influencia del grado de madurez en la firmeza del pltano hartn (Musa AAB Simmonds). Revista UDCA Actualidad & Divulgacin Cientfica18(2), 563-567.
  11. Torres, R., Montes, E.J., Prez, O.A., Andrade, R.D. (2012). Influencia del estado de madurez sobre las propiedades viscoelsticas de frutas tropicales (mango, papaya y pltano). Informacin tecnolgica23(5), 115-124.
  12. Torres, R., Montes, E. J., Prez, O. A., & Andrade, R. D. (2013). Relacin del color y del estado de madurez con las propiedades fisicoqumicas de frutas tropicales. Informacin tecnolgica24(3), 51-56.
  13. Valenzuela, M.. (2010). Desarrollo y evaluacin fsica, qumica y sensorial de un jarabe de sacarosa con pulpa de caf saborizado (Coffea arabica). (Bachelor's thesis, Escuela Agrcola Panamericana Zamorano).
  14. Vargas-Daz, S., Seplveda, J.U., Ciro, H.J., Mosquera, A.J., Bejarano, E. (2019). Physicochemical, sensory and stability properties of a milk caramel spread sweetened with a glucose-galactose syrup from sweet whey. Revista Facultad Nacional de Agronoma Medelln72(3), 8995-9005.
  15. Viera, W., Shinohara, T., Samaniego, I., Terada, N., Sanada, A., Ron, L., Koshio, K. (2022). Pulp Mineral Content of Passion Fruit Germplasm Grown in Ecuador and Its Relationship with Fruit Quality Traits. Plants, 11(5), 697.
  16. Zargaraan, A., Kamaliroosta, L., Yaghoubi, A. S., & Mirmoghtadaie, L. (2016). Effect of substitution of sugar by high fructose corn syrup on the physicochemical properties of bakery and dairy products: a review. Nutrition and Food Sciences Research3(4), 3-11.

 

 

 

 

 

2023 por los autores. Este artculo es de acceso abierto y distribuido segn los trminos y condiciones de la licencia Creative Commons Atribucin-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)

(https://creativecommons.org/licenses/by-nc-sa/4.0/).

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/