Incidencia de la metodologa utilizada por los docentes de matemtica en el rendimiento acadmico de los estudiantes

 

Incidence of the methodology used by mathematics teachers in the academic performance of students

 

Incidncia da metodologia utilizada por professores de matemtica no desempenho acadmico de alunos

 

Mercedes Leticia Lara Freire I
leticia.lara@espoch.edu.ec
https://orcid.org/0000-0002-2589-1044
Marco Antonio Lara Freire II
antonio.lara@educacion.gob.ec
https://orcid.org/0000-0001-9634-4913
Franklin Edier Lpez Crdenas III
frankline.lopez@educacion.gob.ec
https://orcid.org/0000-0002-1151-6278
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Correspondencia: leticia.lara@espoch.edu.ec

 

 

Ciencias de la Educacin

Artculo de Investigacin

* Recibido: 23 de mayo de 2022 *Aceptado: 12 de junio de 2022 * Publicado: 27 de julio de 2022

 

       I.          Magster en Ciencias de la Educacin Aprendizaje de la Matemtica, Docente de la Escuela Superior Politcnica de Chimborazo, ESPOCH, Riobamba, Ecuador.

      II.          Mster Universitario en Didctica de la matemtica en Educacin Secundaria y Bachillerato, Docente de la Unidad Educativa Carlos Cisneros, Riobamba, Ecuador.

    III.          Magster en Educacin Matemtica, Docente de la Unidad Educativa Carlos Cisneros. Riobamba, Ecuador.


Resumen

De qu manera, la metodologa utilizada por los docentes de matemtica incide en el rendimiento acadmico de los estudiantes del colegio Tcnico Mons. Maximiliano Spiller de la ciudad de Tena?, pretendiendo alcanzar el siguiente objetivo general: Determinar la incidencia de la metodologa utilizada por los docentes de matemtica en el rendimiento acadmico de los estudiantes del colegio Tcnico Mons. Maximiliano Spiller de la ciudad de Tena.

El marco terico se construy del anlisis conceptual de varios autores, los mismos que constan en la bibliografa y relacionando con la realidad del contexto, contiene unidades didcticas como: Paradigmas en la Educacin, Teoras del Aprendizaje, La Didctica, Mtodos y Tcnicas de enseanza, Evaluacin y Rendimiento Acadmico. La investigacin es de tipo exploratoria, descriptiva, prospectiva, debido a que se pretende dar respuesta a los sujetos investigados, sustentados por el diseo no experimental. Se aplic encuestas estructuradas a estudiantes y profesores de matemtica del colegio. Del estudio se desprende que las metodologas aplicadas por los docentes de matemtica estn influyendo de manera positiva en el rendimiento de los estudiantes, sin embargo, se puede percibir un cierto descontento en cuanto a la evaluacin se refiere, ya que los profesores no dan importancia al aspecto actitudinal del estudiante.

Palabras Clave: anlisis conceptual; unidades didcticas; paradigmas en la educacin; encuestas estructuradas.

 

Abstract

How does the methodology used by mathematics teachers affect the academic performance of students at the Mons. Maximiliano Spiller" of the city of Tena?, intending to achieve the following general objective: To determine the incidence of the methodology used by mathematics teachers in the academic performance of the students of the "Mons. Maximiliano Spiller from the city of Tena.

The theoretical framework was built from the conceptual analysis of several authors, the same ones that appear in the bibliography and relating to the reality of the context, it contains didactic units such as: Paradigms in Education, Learning Theories, Didactics, Teaching Methods and Techniques, Evaluation and Academic Performance. The research is exploratory, descriptive, prospective, because it is intended to respond to the investigated subjects, supported by the non-experimental design. Structured surveys were applied to students and mathematics teachers at the school. The study shows that the methodologies applied by mathematics teachers are positively influencing the performance of the students, however, a certain discontent can be perceived as far as the evaluation is concerned, since the teachers do not give importance to the student attitude.

Keywords: conceptual analysis; teaching units; paradigms in education; structured surveys.

 

Resumo

Como a metodologia utilizada pelos professores de matemtica afeta o desempenho acadmico dos alunos do Mons. Maximiliano Spiller" da cidade de Tena?, pretendendo atingir o seguinte objetivo geral: Determinar a incidncia da metodologia utilizada pelos professores de matemtica no desempenho acadmico dos alunos do "Mons. Maximiliano Spiller da cidade de Tena.

O referencial terico foi construdo a partir da anlise conceitual de diversos autores, os mesmos que aparecem na bibliografia e relacionando com a realidade do contexto, contm unidades didticas como: Paradigmas em Educao, Teorias de Aprendizagem, Didtica, Mtodos e Tcnicas de Ensino. , Avaliao e Desempenho Acadmico. A pesquisa exploratria, descritiva, prospectiva, pois pretende responder aos sujeitos investigados, amparada no desenho no experimental. Foram aplicados inquritos estruturados a alunos e professores de matemtica da escola. O estudo mostra que as metodologias aplicadas pelos professores de matemtica esto influenciando positivamente o desempenho dos alunos, porm, percebe-se certo descontentamento no que diz respeito avaliao, pois os professores no do importncia atitude do aluno.

Palavras-chave: anlise conceitual; unidades de ensino; paradigmas na educao; pesquisas estruturadas.

Introduccin

El Colegio Tcnico Mons. Maximiliano Spiller de Seccin Diurna, es Fiscomicional y en este establecimiento se educan 378 estudiantes de ambos sexos prestando sus servicios 38 profesores, cinco de los cuales pertenecen al rea de matemtica.

Una de las actividades dentro del rea educativa de gran importancia exigencia y responsabilidad la relacionada con las estrategias metodolgicas que se cumplen en la institucin. Es necesario que estas sean revisadas cuidadosamente para lograr un mejor rendimiento en el aprendizaje de los estudiantes.

En los actuales momentos se reconoce la importancia y necesidad de revisar esas estrategias metodolgicas para lograr as que los estudiantes se sientan altamente motivados y comprometidos con su aprendizaje, permitiendo as que sean capaces de asumir su responsabilidad con claro conocimiento de su misin, como es el de mejorar su rendimiento acadmico durante y al final de sus estudios

El propsito general del investigador es determinar cmo influye las estrategias metodolgicas en el aprendizaje de los estudiantes y estas sean estudiadas a travs de las calificaciones obtenidas por ellos en los diferentes lapsos en el rea de matemtica.

Esta propuesta de investigacin es de gran inters para estudiantes, docentes, autoridades, personal administrativo y pblico en general; ya que en la actualidad nadie puede considerar que el conocimiento est terminado o que los conocimientos que en algn momento se facilitaron en las universidades son suficientes para realizar el trabajo educativo con eficiencia; ms todava si nuestro trabajo es con seres humanos, por naturaleza cambiantes y poseedores de una gran diversidad de conocimientos, estratos sociales y especialmente cultural, y ms an cuando al pasar del tiempo se ha venido descubriendo nuevas formas de enseanza, nuevas metodologas a aplicarse en el quehacer educativo en donde los docentes nos hemos quedado estancados en metodologas tradicionales sin querer darnos cuenta que hoy en la actualidad la sociedad educativa exige mejorar la calidad de la educacin. Este trabajo de investigacin comprende unidades didcticas relacionadas con las variables, estas son: Metodologa de enseanza y Rendimiento acadmico y la poblacin, muestra, mtodos y tcnicas de investigacin, sirvieron para la recoleccin de la informacin; donde los resultados y anlisis fueron estructurados como resultado de cada pregunta de las encuestas que se aplic tanto a profesores como a estudiantes. Finalmente, las conclusiones y recomendaciones es el resultado del anlisis e interpretacin de los resultados, al igual que alternativas o propuestas de solucin a la realidad investigada.

 

 

 

 

 

Revisin Literaria

Principales Paradigmas que influyen en el proceso enseanza aprendizaje concepto de paradigma

Kuhn define paradigma como: "esquema de interpretacin bsico que comprende supuestos tericos, tcnicas y leyes generales que adopta una comunidad concreta de cientficos". As pues, el paradigma acta como un modelo de accin. Asimismo, Kuhn distingue los siguientes pasos para hacer ciencia:

Pre - Ciencia: Total desacuerdo y constante debate. Tantas teoras como cientficos.

Paradigma: Acuerdo de fondo entre cientficos sobre los principios para hacer ciencia.

Ciencia normal: Surge por la aplicacin del paradigma vigente, que est consensuado.

Crisis: Aparece cuando una anomala que es tan grave que afecta a los fundamentos de un paradigma. Entonces otro compite por emerger. Y el primero pierde su status cientfico. Una crisis generalizada da lugar a una revolucin cientfica.

Los paradigmas fundamentales en psicologa y educacin, vigentes en el siglo XXI, son los siguientes: Paradigma conductual, Paradigma Cognitivo, Paradigma ecolgico Contextual, Paradigma humanista (Martnez Martnez, Illueca Ballester, Martnez Aroca, & Rodrguez Santos, 2007).

 

Teoras del Aprendizaje

Teora del Aprendizaje Significativo

David Pal Ausubel (1918), psiclogo de la educacin estadounidense, nacido en Nueva York, hijo de un matrimonio judo de inmigrantes de Europa central. Graduado en La Universidad de su ciudad natal, es el creador de la teora del aprendizaje significativo, uno de los conceptos bsicos en el moderno constructivismo. Dicha teora responde a una concepcin cognitiva del aprendizaje, segn la cual ste tiene lugar cuando las personas interactan con su entorno tratando de dar sentido al mundo que perciben.

Ausubel se ocupa del aprendizaje significativo, es decir el aprendizaje en el que un contenido tenga sentido y no sea solamente la memorizacin de palabras, slabas, etc. sino que, el estudiante, todos los conocimientos que guardan en su memoria a largo plazo sean con sentidos y significados (Bermdez, Johanna, Dionicio, & Stefany, 2020).

Para esto enfoca el aprendizaje receptivo, que, segn l, es cuando el profesor establece los contenidos y la estructura del material. Este tipo de aprendizaje se opone al por descubrimiento, sin embargo, Ausubel cree que los resultados pueden ser tan eficaces como los que se obtienen por descubrimiento, adems, hay la ventaja de que ahorran tiempo al alumno y son ms organizados (Rodrguez Amores, 2015).

En cuanto a la evaluacin, Ausubel manifiesta que debe ser una herramienta de ayuda para el profesor no solo para evaluar al alumno, sino tambin el mtodo, tcnicas, instrumentos y recursos que utiliza.

El cree que, entre los elementos a evaluarse, a ms de los conocimientos, debe tomarse en cuenta la personalidad, actitudes, intereses, etc. Sugiere adems que los maestros no deben limitarse nicamente a los test sino tambin recurrir a otros medios como discusin, disertacin; es decir, hablar de una evolucin integral.

 

Teora de Piaget

Piaget considera que hay dos formas de aprendizaje:

  • El primer equivalente al desarrollo mismo de la inteligencia, el cual es un proceso espontneo y continuo que incluye maduracin, experiencia, transmisin social y desarrollo del equilibrio.
  • La segunda limitada a la adquisicin de nuevas respuestas para situaciones especficas o la adquisicin de nuevas estructuras para operaciones mentales especficas. Pone nfasis en que el desarrollo de la inteligencia de los nios es una adaptacin del individuo al ambiente o al mundo que lo rodea y que se produce a travs de un proceso de maduracin que incluye lo que se llama aprendizaje (Linares, 2019).

El desarrollo de la inteligencia comprende dos partes:

  • Adaptacin: que es el proceso que permite a los nios adquirir un equilibrio entre asimilacin y acomodacin.
  • Organizacin: que se encarga de estructurar la informacin en elementos internos de la inteligencia.

La inteligencia se desarrolla a travs de la asimilacin y la acomodacin a esta realidad, y la organizacin y la adaptacin no estn separadas; pues, el organismo necesita organizar y estructurar simultneamente su experiencia. Se identifica tres componentes de la inteligencia, es decir el proceso de organizacin y adaptacin por asimilacin y acomodacin; la estructura de la inteligencia, considerada la ms importante y que abarca las propiedades de organizacin de las operaciones y de los esquemas responsables de comportamientos especficos; y el contenido de la inteligencia, que se refleja en el comportamiento y se lo puede observar a travs de la actividad sensorio motriz y conceptual.

Piaget hace una diferencia entre retencin y memoria, para l hay dos tipos de retencin: El conocimiento figurativo o contenido del aprendizaje, y estructura operacional, que es la manera con la cual se retiene el material; y tres tipos de memoria: reconocimiento que depende solo de la percepcin de los esquemas, la evocacin, que requiere de lenguaje e imgenes mentales; y la memoria reconstructiva que implica la imitacin o reconstruccin del modelo (Pollio Rojas, 2008).

Manifiesta que se deben evitar a toda costa las actividades que sean simplemente copia, memorizacin repeticin.

Para Piaget el objetivo principal de la educacin es crear o formar el raciocinio intelectual y moral de los nios, que lo irn haciendo de acuerdo a la edad cronolgica y mental; pero, el problema est en ayudarlos a construir sus propios procesos y lograr una coherencia intelectual y moral encontrando los mtodos y medios ms apropiados. Lo importante para l es el desarrollo de la inteligencia y no la manifestacin visible de determinadas respuestas comporta mentales, por lo que los objetivos siempre deben agruparse en categoras bastante amplias.

En cuanto a evaluacin, su principal inters es evaluar el proceso, aptitudes, capacidades y actitudes que intervienen en dicho proceso, no le interesa mucho el producto del aprendizaje ni las evaluaciones a priori. Recomienda la evaluacin formativa y criterial, y que este proceso sea constante (Borge, 2005).

 

Teora de Vygotsky

Para Vygotsky los aprendizajes son contextualizados, compartidos y socializados para conseguir aprendizajes significativos. La enseanza-aprendizaje es un proceso interactivo, continuo en el ecosistema al cual pertenece la escuela y al que se le considera como el mejor laboratorio cultural para los estudiantes. Este autor se identifica con el paradigma ecolgico contextual (Ivn Snchez Soto, 2011).

 

El aprendizaje es del tipo socio-cultural.

Las caractersticas del aprendizaje son: Todos los tipos de signos o smbolos que tienen algn significado definido socialmente, como el lenguaje, los smbolos matemticos, los signos de la escritura, etc. Ocupan un lugar central en la internalizacin de los elementos culturales.

Desarrollo integral, mediante la interaccin de las personas y su realidad.

Docente es el mediador entre el nivel de desarrollo real y potencial.

 

Trabajo colectivo o grupal.

El objetivo es estimular y desarrollar el potencial que encierra la zona de desarrollo prximo (ZDP) de cada alumno. ZDP es la distancia entre el nivel real de desarrollo que puede lograr el alumno de manera independiente, y el nivel de desarrollo potencial que puede alcanzar para resolver problemas con ayuda. La evaluacin se realiza observando el cambio cognitivo y el desenvolvimiento en su medio.

 

La Enseanza Constructivista

Muchos educadores y lectores pueden resultar sorprendidos por la tesis de que el conocimiento y que el aprendizaje se construye, cuando lo corriente fue reconocer que el conocimiento se aprende, despus de que alguien lo haya descubierto. Incluso todava se cree que el conocimiento se descubre anlogamente como Cristbal Colon descubri el continente americano. La verdad es que la playa, la isla, el continente contra el cual choco Colon existen de manera diferente a como existe el mundo de los conceptos, leyes y teoras de las ciencias. Uno no choca con un concepto ni se encuentra con un conocimiento, ni descubre una ley de la gravedad, todo conocimiento es una construccin mental, sea uno el primero o el ltimo en entenderlo, haya o no haya descubrimiento, de todas maneras la ley de la gravedad existe solo desde el siglo XVII y de diferente a como existen las manzanas que caan sobre la cabeza de Newton (Gamow, 1960)

La enseanza constructiva considera que el aprendizaje humano es siempre una construccin interior, an en el caso de que el educador acuda a una exposicin magistral, pues stas no pueden ser significativas si sus conceptos no encajan ni se ensartan en los conceptos previos de los alumnos. Ya vimos que la idea de enseanza como transmisin mecnica de informacin de una mecnica de informacin de un sujeto activo al otro pasivo es imposible hasta la enseanza ms tradicionalista, porque de hecho nunca la cabeza del alumno est vaca. Aunque el maestro no quiera, el procesamiento interior de cualquier mensaje que les llega a los alumnos es invisible. Con mayor razn en la enseanza constructiva, cuyo propsito es precisamente facilitar y potenciar al mximo ese procesamiento interior del alumno con miras a su desarrollo (Cervantes Garcia, 2017).

Las caractersticas esenciales de la accin constructiva son bsicamente cuatro:

  1. Se apoyan en la estructura conceptual del alumno, parte de las ideas y preconceptos que alumno trae sobre el tema de la clase.
  2. Prev el cambio conceptual que se espera de la construccin activa del nuevo concepto y su repercusin en la estructura mental.
  3. Confronta las ideas y los preconceptos afines al tema de enseanza, con el nuevo concepto cientfico que se ensea.
  4. Aplica el nuevo concepto a situaciones concretas con el fin de ampliar su transferencia,

 

La Enseanza por procesos

En los ltimos aos intensificado el apremio de ensear por proceso, de trabajar por procesos, de desarrollar procesos. Antiguamente se enseaba por contenidos, se planeaban y se parcelaban los contenidos. Posteriormente, hasta la dcada de los setenta (en algunos casos hasta ahora) se enseaba por objetivos, por resultados conductuales. Hoy da los especialistas en educacin prefieren hablar de procesos de construccin de conceptos, de procesos de pensamiento, de procesos curriculares, de procesos de evaluacin. La verdad es que una enseanza constructivista tendra que articulas en la teora, en el diseo y en su implementacin todos estos procesos, de modo que facilite el ms rico proceso de interaccin maestros alumnos padres de familia comunidad, todo ello abarcado y cruzado por el proceso ms amplio: el proceso socio histrico cultural que penetra por todas partes la enseanza real. Si la enseanza constructivista est en capacidad de sintetizar el proceso de construccin cientfico cultural y el proceso de desarrollo individual mediante un puente flexible que es el proceso curricular, detengmonos en cada uno de estos procesos, no sin antes precisar que significa en general el trmino proceso y que relacin especial guarda con el constructivismo y la enseanza (Manrique & Puente, 1999).

 

 

 

Estructura de la Matemtica

La matemtica como ciencia ha reorganizado sus contenidos en base a estructuras. En cambio, en el campo de la enseanza se contina tratando a la matemtica con criterio departamentista. El sistema numrico, de funciones, geomtrico y de medida y estadstica y probabilidades, se mantienen independientes, casi sin ninguna relacin unas de otras y hasta desarticulados los aspectos de la misma rea. Esta diseccin de la matemtica y este tratamiento por parcelas, contradice lo que se considera como estructura dentro de las corrientes de la psicologa de las funciones cognitivas.

En consecuencia, tanto por razones de carcter cientfico como psicolgico, debe aplicarse el sentido estructural de la enseanza de la matemtica, en lugar de continuar con un programa en bloques, se debe dar paso a una programacin en espiral (Snchez, 2004).

 

La Enseanza pura y utilitaria de la Matemtica

La enseanza de la matemtica es importante porque propende al desarrollo de un pensamiento lgico que le hace ms preciso y veraz. El propsito de la matemtica pura es que se conozca y se ensee la matemtica como una obra cultural, como una disciplina llena de ideas y no solo como una coleccin de frmulas para la manipulacin de operaciones. Ms interesante en consecuencia es, el proceso mental utilizado en la solucin de problemas que la prctica operacional, porque la matemtica pura proporciona a la persona formas lgicas de razonamiento, en tanto que la matemtica utilitaria mecanismos operativos.

En el campo de la aplicabilidad y servicios, actualmente es mucho ms amplia. La industria, el comercio, la banca, la educacin, el transporte; consideran un sitio especial a la matemtica en la elaboracin de sus programas. Esta circunstancia ha dado a esta ciencia un carcter ms abierto y ms flexible.

 

Didctica

Puede decirse que la didctica est representada por el conjunto de tcnicas a travs de las cuales se realiza la enseanza; para ello rene y coordina, con sentido prctico, todas las conclusiones y resultados a que arriban las ciencias de la educacin, a fin de que dicha enseanza resulte ms eficaz. La didctica es una disciplina orientada en mayor grado hacia la prctica, toda vez que su objetivo primordial es orientar la enseanza.

A su vez, la enseanza no es ms que la direccin del aprendizaje. Luego, en la ltima instancia, la didctica est constituida por un conjunto de procedimientos y normas destinados a dirigir el aprendizaje de la manera ms eficiente que sea posible (Campanario Larguero, 2000).

 

Elementos Didcticos

La didctica tiene que considerar seis elementos fundamentales que son, con referencia a su campo de actividades: el estudiante, los objetivos, el profesor, la materia, las tcnicas de enseanza y el medio geogrfico, econmico, cultural y social.

El Estudiante: Es quien aprende; aquel por quien y para quien existe la escuela. Siendo as, est claro que es la escuela la que debe adaptarse a l, y no l a la escuela. Esto debe interpretarse de un modo general. En la realidad debe existir una adaptacin recproca, que se oriente hacia la integracin, esto es, hacia la identificacin entre el estudiante y la escuela. Para ello, es imprescindible que la escuela est en condiciones de recibir l estudiante tal como l es, segn su edad evolutiva y sus caractersticas personales. Esto debe ser as a los efectos de conducirlo, sin choques excesivos ni frustraciones profundas e innecesarias, a modificar su comportamiento en trminos de aceptacin social y desarrollo de su personalidad. Esto se cumple si la escuela, desde el comienzo, se adapta al estudiante, y si, sobre la base de su accin educativa, ste se va adaptando poco a poco a ella (Palmero, La teora del aprendizaje significativo, 2011).

Los Objetivos: Toda accin didctica supone objetivos. La escuela no tendra razn de ser si no tuviese en cuenta la conduccin del estudiante hacia determinadas metas, tales como: modificacin del comportamiento, adquisicin de conocimientos, desenvolvimiento de la personalidad, orientacin profesional, etc. En consecuencia, la escuela existe para llevar al estudiante hacia el logro de determinados objetivos, que son los de la ecuacin en general, y los del grado y tipo de escuela en particular.

El Profesor: Es el orientador de la enseanza. Debe ser fuente de estmulos que lleve al estudiante a reaccionar para que se cumpla el proceso de aprendizaje. El deber del profesor es tratar de entender a sus estudiantes. Lo contrario es mucho ms difcil y hasta imposible. El profesor debe distribuir los estmulos entre sus estudiantes en forma adecuada, de modo que los lleve a trabajar de acuerdo con sus peculiaridades y posibilidades. No debe olvidarse que, a medida que la vida social se torna ms compleja, el profesor se hace ms indispensable, en su calidad de orientador y gua, para la formacin de la personalidad del educando.

La Materia: La materia es el contenido de la enseanza. A travs de ella sern alcanzados los objetivos de la escuela, para entrar en el plan de estudios, la materia debe someterse a dos selecciones:

  • La primera seleccin es para el plan de estudios, se trata de saber cules son las materias ms apropiadas para que se concreten los objetivos de la escuela.
  • La segunda seleccin es necesaria para organizar los programas de las diversas materias. Dentro de cada asignatura, es preciso saber cules son los temas o actividades que deben seleccionarse en mrito a su valor funcional, informativo o formativo.

 

Mtodos y Tcnicas de Enseanza

Tanto los mtodos como las tcnicas son fundamentales en la enseanza y deben estar, lo ms prximo que sea posible, a la manera de aprender de los estudiantes. Mtodos y tcnicas deben propiciar la actividad de los educandos, pues ya ha mostrado la psicologa del aprendizaje la superioridad de los procedimientos activos sobre los pasivos. La enseanza de cada materia requiere, claro est, tcnicas especficas, pero todas deben ser orientadas en el sentido de llevar al educando a participar en los trabajos de la clase, sustrayndole a la clsica posicin del mero or, escribir y repetir (HURTADO PALATE, 2014).

 

Medio Geogrfico, Econmico, Cultural y Social

Es indispensable, para que la accin didctica se lleve a cabo en forma ajustada y eficiente, tomar en consideracin el medio en donde funciona la escuela, pues solamente as podr orientarse ella hacia las verdaderas exigencias econmicas, culturales y sociales. La escuela cumplir cabalmente su funcin social solamente si considera como corresponde el medio al cual tiene que servir, de manera que habilite al educando para tomar conciencia de la realidad ambiental que lo rodea y en la que debe participar (Lpez, 2019).

 

Corrientes Didcticas en el Aprendizaje de la Matemtica

Para abordar el problema se considera una sntesis de las principales corrientes didcticas en el aprendizaje de las matemticas y entre estas corrientes se explica porque el mecanicismo es inadecuado para cumplir con los fines propuestos.

El Estructuralismo: Esta corriente nace como la solucin al problema del aprendizaje siguiendo la estructura misma del sistema de conocimientos de las matemticas, es decir una estructura axiomtica cerrada y bien estructurada, en su momento esta corriente fue conocida como la matemtica moderna, el mtodo deductivo parte de la observacin de los principios generales para caracterizar las situaciones particulares, como la matemtica es una ciencia con sistema de conocimientos bien estructurado se presupone que cualquier problema o situacin particular halla su explicacin en alguna parte del sistema, tambin se supone que las estructuras del conocimiento son anlogos a los de las matemticas, aparentemente la estrategia correcta era la de ensear las matemticas como un sistema axiomtico en el que el razonamiento intuitivo era superfluo y careca de sentido si se estaba trabajando sobre supuestos bien fundamentados como son los axiomas la aplicacin de este estilo presenta al estudiante los conceptos con un grado de abstraccin que ya no le permite utilizar su intuicin para llegar a construir los conceptos que se dan en el proceso natural de construccin de conocimientos (Rodrguez, 2020).

El Mecanicismo: Para esta corriente las matemticas son un conjunto de reglas que los alumnos deben aprender y luego aplicarlos a problemas, los problemas son los ejemplos que el profesor resuelve aplicando las reglas que acaba de ensear el estudiante debe memorizar las reglas y las frmulas para despus ejercitar utilizando problemas afines a los ejemplos ya resueltos, es decir los problemas deben clasificarse para aplicar las reglas haciendo analogas.

El Empirismo: Para el empirismo la matemtica tiene el carcter de herramienta para resolver problemas concretos del contexto cercano al estudiante, es decir que la utilidad inmediata debe ser el factor motivante en el proceso de aprendizaje, sin embargo, carece de profundidad para formar conceptos y abstracciones por lo que el estudiante esta privado de desarrollar su creatividad, pareciera que los matemticos que siguen esta corriente son reacios a aceptar a nuevos miembros en su comunidad por eso limitan el aprendizaje a lo necesario.

El Realismo: Esta corriente surge partiendo de las ideas de Freudenthal siguiendo el mtodo inductivo, es decir, partir de los hechos concretos para construir modelos generales, bsicamente plantea la reinvencin de las matemticas por el alumno en base a su realidad circundante a diferencia de la corriente empirista enfatiza en los procesos de aprendizaje y su sistematizacin.

La Planificacin

Ante la urgencia de superar los agudos lastres de una planificacin tradicional, la primera cuestin es admitir la trascendencia decisiva de la planificacin didctica para mejorar el desempeo docente de los profesores. Mientras los maestros sigan considerando a las programaciones didcticas como meros requisitos reglamentarios que no tienen utilidad prctica o como instrumentos que no aportan para elevar la calidad educativa, vano ser el esfuerzo por devolver a esta fase el sitial que debe ocupar en el proceso enseanza aprendizaje.

Todos los educadores que se proponen elaborar planes didcticos, deberan tener como mira esencial el que sus diseos contribuyan al avance de la educacin ecuatoriana. Para decirlo de otro modo, quien concibe un plan no debe olvidar que su pequeo, pero significativo aporte, debe contribuir al mejoramiento de la calidad educativa que tanto reclaman los organismos nacionales e internacionales. Un educador annimo aclara el valor de los proyectos didcticos en el gran contexto didctico:

No obstante, lo contundente de la argumentacin anterior, muchos profesores, sobre todo los que tienen varios aos de experiencia, pueden sostener la tesis de que dadas las mltiples contingencias que pueden ocurrir y ocurren durante la enseanza, resulta un tanto intil gastar tiempo y esfuerzo en el diseo de planes bien estructurados. En verdad, no dejen de tener razn quienes exponen este razonamiento, pues las fortuitas situaciones que se presentan en el proceso enseanza aprendizaje, jams pueden ser previstas ni por el ms inteligente y tcnico plan que se elabore (Villarroel & Sgreccia, 2011).

 

Objetivos de la Planificacin Didctica

El planeamiento didctico tiene como objetivos esenciales:

  • Superar la improvisacin en la labor docente.
  • Mejorar la calidad de la enseanza mediante la realizacin de proyectos innovadores.
  • Elevar la productividad del sistema educativo, suprimiendo las causas pedaggicas de la desercin y la repeticin.
  • Adecuar la enseanza a las caractersticas y necesidades individuales, y de la estructura socioeconmica del entorno.
  • Economizar el tiempo de profesores y estudiantes y evitar esfuerzos intiles.
  • Contribuir al propio perfeccionamiento docente.

 

 

 

Rendimiento Acadmico

El nivel de conocimientos de un estudiante es medido en una prueba de evaluacin. En el rendimiento acadmico intervienen, adems del nivel intelectual, variables de personalidad, motivacionales y medio que lo rodea, cuya relacin con el rendimiento no siempre es lineal, sino que est modulada por factores como nivel de escolaridad y mtodos de enseanza o modelos didcticos.

 

Factores que Influyen en el rendimiento Acadmico

Estructura cognoscitiva y disposicin del desarrollo

Es til conocer que no todas las personas tenemos el mismo estilo de aprender. Estudios realizados nos permiten identificar estilos cognoscitivos de dependencia y de independencia de campo. Las personas dependientes de campo, tienden a percibir los patrones como un todo; tienen problemas para concentrarse en un solo aspecto o para analizar las partes que forman un patrn. Son mejores para aprender material de contenido social; necesitan estructuras, metas y reforzamiento externo, necesitan que se les ensee a usar ayudas para memorizar, suelen aceptar la organizacin que se les impone y son capaces de reorganizar finalmente, necesitan instrucciones explicitas sobre cmo resolver los problemas (Mora Echeverry, 2013).

 

La Capacidad Intelectual

Ausubel define la capacidad intelectual del estudiante como el constructo, basado en mediciones, que seala el nivel general de desempeo cognoscitivo. Capacidad funcional determinada de manera mltiple (por factores genticos y ambientales) cuyo nivel refleja la potencia relativa de estos factores tal como existen e interactan en un caso particular. Es casi imposible separar la inteligencia en los genes de la inteligencia debida a la experiencia. De hecho, la inteligencia parece ser an ms complicada que otras caractersticas variables. Las capacidades mentales en la medida en que son determinadas por la herencia, son polis genticas, es decir, influidas por muchos grupos de genes. No hay una relacin directa como la que se encuentra en algunas caractersticas fsicas como el color de los ojos o el grupo sanguneo.

 

 

 

Factores de Motivacin y Actitud

Garca Venero dice: la motivacin (tambin llamada por algunos autores actitudes y expectativas) es considerada como uno de los factores determinantes del aprendizaje; es decir como la causa de que se logren los objetivos de aprendizaje establecidos.

Especficamente Gagn considera que las expectativas del estudiante afectan todos los procesos que actan en el procesamiento de la informacin humana; influyen en la direccin de su atencin, en su forma de codificar los datos adquiridos y en la manera de organizar sus respuestas (Estrada Huancas, 2011).

Incentivos: son procedimientos y mtodos externos, factores e influencias establecidas por el maestro para despertar el inters y estimular los motivos que modifican la accin del estudiante. Los incentivos son medios aplicados a un fin.

Motivo: es lo que induce a una persona a llevar una accin a la prctica. Denota todos los factores y condiciones que inician y mantienen la actividad o la conducta.

Motivacin: es el trasfondo psquico impulsor que sostiene la fuerza de la accin y seala su direccin. Raras veces procede un acto de una sola motivacin, sino que, en general, nace de un conjunto de motivaciones.

 

Evaluacin del Rendimiento Acadmico

La evaluacin se realiza despus de un tiempo prudencial en el proceso docente educativo (minutos, horas, das,) para constatar el grado de cumplimiento de los objetivos y ver si el proceso fue exitoso o no. Pero de manera ms general es el grado de respuesta al proceso como un todo (al objetivo, contenido, mtodo, tcnica, medio, evaluacin, etc.); debe ser aplicada de manera permanente, sistemtica y continua.

Mediante la evaluacin se formulan juicios de valor para tomar correctivos y acciones tendientes a mejorar el proceso y el rendimiento acadmico (Lobo, 2020).

 

Objetivos de la evaluacin:

       Verificar el cumplimiento de los objetivos planteados y que los estudiantes hayan adquirido conocimientos, habilidades y destrezas.

       Controlar el proceso para estimular y facilitar al estudiante su aprendizaje.

       Verificar la efectividad de mtodos, tcnicas, medios, etc.

       Evidenciar si los estudiantes aprendieron a aprender.

       Obtener informacin para retroalimentar y corregir el proceso.

Clases de evaluacin:

       Segn los objetivos: frecuente, parcial, final, instructiva, educativa.

       Segn el momento: diagnstica, formativa, sumativa.

       Segn el origen: autoevaluacin, coevaluacin, retro evaluacin.

       Segn la forma: oral, escrita.

Caractersticas de la evaluacin:

       De proceso: se preocupa por la marcha del proceso, orientndolo, ajustndolo, buscando calidad, traduce el resultado en criterios valorativos.

       Cualitativa: es formativa, holstica, dinmica, descubridora, eficaz.

       Inicial: es de diagnstico, de prerrequisitos, sirve para planificar.

       Continua: se realiza durante todo el proceso.

       Final: sumativa, evala cambios cualitativos del estudiante.

       Investigativa: identifica problemas, formula hiptesis, plantea interrogantes, busca estrategias de solucin, etc.

 

Metodologa

En el presente trabajo de investigacin se aplic la siguiente metodologa:

Inductivo: Puesto que vamos a partir de una muestra para extraer conclusiones generales que abarquen a toda la poblacin.

Hipottico deductivo: Ya que se parte del planteamiento de un problema, se busca un marco terico, se formula hiptesis, se recogen datos, se interpretan los mismos y se llega a establecer conclusiones.

Descriptiva: por cuanto se va a describir un problema y medir las variables de manera individual para obtener panoramas ms precisos de la realidad o situacin que se investiga.

Diseo de la Investigacin: El diseo es no experimental puesto que no vamos a manipular las variables de tal manera que el problema se lo estudie tal y como ocurre naturalmente. En este sentido estamos diciendo que nuestro diseo ser transeccional correlacional y hermenutico, ya que vamos a determinar la relacin de las variables en un determinado tiempo. Posterior a esto se har un anlisis bibliogrfico que nos permita interpretar dicho problema.

Tipo de Investigacin: Segn el tiempo de ocurrencia de los hechos y registro de la informacin, es retrospectiva, para lo cual se hizo un anlisis del rendimiento. Segn el anlisis y alcance de los resultados es descriptiva, porque determina como es y cmo est el objeto de estudio.

Tipo de Estudio: Bibliogrfico y documental.

Tcnicas: Para realizar el anlisis del tema propuesto se aplicaron encuestas estructuradas a maestros y estudiantes del colegio.

La informacin se obtendr de las 03 autoridades, 05 docentes y 190 estudiantes que constituyen la muestra con la cual se trabajar en la investigacin. Se recoger la informacin sobre las estrategias metodolgicas vigentes y la pedagoga o paradigma al que ms se inclinan en Matemtica. Los investigadores con los resultados que se obtengan formularn una propuesta alternativa para que guarden correspondencia las estrategias metodolgicas con el rendimiento acadmico de los estudiantes en la asignatura de Matemtica. Las tcnicas seleccionadas son: observacin, entrevista y encuesta, para con estos resultados una vez codificados, se pueda verificar la hiptesis. Por supuesto que esta recoleccin de la informacin se har con instrumentos probados en su validez y confiabilidad.

 

Resultados

  • Hiptesis

Hiptesis General: Las metodologas aplicadas por los docentes de matemtica del colegio Tcnico Mons. Maximiliano Spiller de la ciudad de Tena, inciden de manera significativa en el rendimiento acadmico de los estudiantes.

Hiptesis especficas: Los docentes de matemtica del colegio tcnico Mons. Maximiliano Spiller de la ciudad de Tena, aplican de manera poco satisfactoria los procesos didcticos, pedaggicos y psicolgicos en el proceso enseanza aprendizaje. Los mtodos y tcnicas de aprendizaje utilizados por los docentes de matemtica del colegio tcnico Mons. Maximiliano Spiller de la ciudad de Tena, obedecen a disposiciones ministeriales. Los docentes de matemtica del colegio tcnico Mons. Maximiliano Spiller de la ciudad de Tena, no conocen lo suficiente a cerca de la metodologa especfica de la didctica de la matemtica para poder aplicar con los estudiantes.

Verificacin de Hiptesis Especifica 1

Los docentes de matemtica del colegio tcnico Mons. Maximiliano Spiller de la ciudad de Tena, aplican de manera poco satisfactoria los procesos didcticos, pedaggicos y psicolgicos en el proceso enseanza aprendizaje.

 

Tabla 1: Verificacin de Hiptesis Especifica 1

Pregunta

Satisface la hiptesis (%)

No Satisface la hiptesis (%)

Total (%)

1E

32.11

67.89

100

2E

40.01

60

100

4E

58.42

41.58

100

8E

25.79

74.21

100

10E

19.48

80.53

100

11E

61.05

38.95

100

12E

38.95

61.06

100

15E

80.52

19.47

99.99

1P

0

100

100

3P

40

60

100

5P

80

20

100

8P

80

20

100

9P

100

0

100

11P

80

20

100

14P

60

40

100

15P

20

80

100

16P

0

100

100

SUMATORIA

816.33

883.13

1699.46

PROMEDIO

48.03

51.97

100

Autor: Investigadores

Fuente: Encuestas aplicadas a profesores de matemtica y estudiantes del Colegio Tcnico Mons. Maximiliano Spiller

 

 

Grfico 1: Verificacin de Hiptesis Especifica 1

 

 

 

 

 

 

 

 

Autor: Investigadores

Fuente: Encuestas aplicadas a profesores de matemtica y estudiantes del Colegio Tcnico Mons. Maximiliano Spiller

 

Anlisis e Interpretacin: Para verificar la hiptesis especfica 1, nos sustentamos en la aplicacin de las tcnicas primarias de investigacin como la encuesta estructurada a profesores y estudiantes del Colegio Tcnico Mons. Maximiliano Spiller de la ciudad de Tena, para luego tabular los resultados, pregunta tras pregunta y arrojar los siguientes resultados: Se trata de una investigacin descriptiva, se determina que el 48.03 % satisface la hiptesis y el 51.97% no satisface la hiptesis, lo que quiere decir que los docentes de la asignatura de matemtica del Colegio Tcnico Mons. Maximiliano Spiller de la ciudad de Tena, aplican correctamente los procesos didcticos, pedaggicos y psicolgicos en el proceso enseanza aprendizaje, esto debera verse reflejado en un mejor rendimiento del educando.

Verificacin de Hiptesis Especifica 2

Los mtodos y tcnicas de aprendizaje utilizados por los docentes de matemtica del colegio tcnico Mons. Maximiliano Spiller de la ciudad de Tena, obedecen a disposiciones ministeriales.

 

Tabla 2: Verificacin de Hiptesis Especifica 2

Pregunta

Satisface la hiptesis (%)

No Satisface la hiptesis (%)

Total (%)

1E

32.11

67.89

100

2E

40

60

100

3E

87.09

12.1

100

7E

36.32

63.68

100

8E

25.79

74.21

100

9E

25.79

74.21

100

10E

19.47

80.53

100

11E

61.05

38.95

100

12E

38.94

61.06

100

13E

43.68

56.32

100

14E

27.37

72.63

100

1P

0

100

100

3P

40

60

100

4P

60

40

100

5P

80

20

100

9P

80

20

100

10P

80

20

100

11P

80

20

100

12P

0

100

100

13P

0

100

100

14P

20

80

100

15P

20

80

100

17P

60

40

100

SUMATORIA

957.61

1341.58

2299.19

PROMEDIO

41.65

58.35

100

Autor: Investigadores

Fuente: Encuestas aplicadas a profesores de matemtica y estudiantes del Colegio Tcnico Mons. Maximiliano Spiller

 

 

 

 

 

 

Grfico 2: Verificacin de Hiptesis Especifica 2

Autor: Investigadores

Fuente: Encuestas aplicadas a profesores de matemtica y estudiantes del Colegio Tcnico Mons. Maximiliano Spiller

 

Anlisis e Interpretacin: Para verificar la hiptesis especfica 2, nos sustentamos en la aplicacin de las tcnicas primarias de investigacin como la encuesta estructurada a profesores y estudiantes del Colegio Tcnico Mons. Maximiliano Spiller de la ciudad de Tena, para luego tabular los resultados, pregunta tras pregunta y arrojar los siguientes resultados: Se trata de una investigacin descriptiva, se determina que el 41.65 % satisface la hiptesis y el 58.35% no satisface la hiptesis, es decir que, los mtodos y tcnicas utilizadas por los docentes del Colegio Tcnico Mons. Maximiliano Spiller de la ciudad de Tena, no obedecen slo a disposiciones ministeriales, sino que se complementan con cmulo de conocimientos de cada docente.

Verificacin de Hiptesis Especifica 3

Los docentes de matemtica del colegio tcnico Mons. Maximiliano Spiller de la ciudad de Tena, no conocen lo suficiente a cerca de la metodologa especfica de la didctica de la matemtica para poder aplicar con los estudiantes

 

Tabla 3: Verificacin de Hiptesis Especifica 3

Pregunta

Satisface la hiptesis (%)

No Satisface la hiptesis (%)

Total (%)

1E

32.11

67.89

100

2E

40

60

100

3E

87.09

12.91

100

4E

34.21

65.79

100

8E

25.79

74.21

100

10E

19.47

80.53

100

11E

61.05

38.95

100

12E

38.94

61.06

100

13E

43.68

56.32

100

14E

27.37

72.63

100

15E

80.52

19.47

99.99

1P

0

100

100

4P

60

40

100

5P

80

20

100

7P

60

40

100

9P

80

20

100

10P

80

20

100

11P

80

20

100

12P

0

100

100

13P

0

100

100

14P

20

80

100

SUMATORIA

934.51

1140.29

2074.80

PROMEDIO

45.04

54.96

100

Autor: Investigadores

Fuente: Encuestas aplicadas a profesores de matemtica y estudiantes del Colegio Tcnico Mons. Maximiliano Spiller

 

Grfico 3: Verificacin de Hiptesis Especifica 3

Autor: Investigadores

Fuente: Encuestas aplicadas a profesores de matemtica y estudiantes del Colegio Tcnico Mons. Maximiliano Spiller

Anlisis e Interpretacin: Para verificar la hiptesis especfica 3, nos sustentamos en la aplicacin de las tcnicas primarias de investigacin como la encuesta estructurada a profesores y estudiantes del Colegio Tcnico Mons. Maximiliano Spiller de la ciudad de Tena, para luego tabular los resultados, pregunta tras pregunta y arrojar los siguientes resultados: Se trata de una investigacin descriptiva, se determina que el 45.04 % satisface la hiptesis y el 54.96% no satisface la hiptesis, es decir que, los docentes del Colegio Tcnico Mons. Maximiliano Spiller de la ciudad de Tena, s conocen metodologas especficas de la didctica de la matemtica y aplican con sus estudiantes.

 

Prueba de Hiptesis General

Las metodologas aplicadas por los docentes de matemtica del colegio Tcnico Mons. Maximiliano Spiller de la ciudad de Tena, inciden de manera significativa en el rendimiento acadmico de los estudiantes.

 

Tabla 4: Prueba de Hiptesis General

Pregunta

No Satisface la hiptesis (%)

Satisface la hiptesis (%)

Total (%)

Hiptesis 1

48.03

51.97

100

Hiptesis 2

41.65

58.35

100

Hiptesis3

45.04

54.96

100

SUMATORIA

134.72

165.28

300

PROMEDIO

44.91

55.09

100

Autor: Investigadores

Fuente: Encuestas aplicadas a profesores de matemtica y estudiantes del Colegio Tcnico Mons. Maximiliano Spiller

 

 

 

 

 

 

 

 

Grfico 4: Prueba de Hiptesis General

Autor: Investigadores

Fuente: Encuestas aplicadas a profesores de matemtica y estudiantes del Colegio Tcnico Mons. Maximiliano Spiller

 

Conclusin de la Prueba de Hiptesis General

Anlisis e Interpretacin: Para verificar la hiptesis general, nos sustentamos en la aplicacin de las tcnicas primarias de investigacin como la encuesta estructurada a profesores y estudiantes del Colegio Tcnico Mons. Maximiliano Spiller de la ciudad de Tena, para luego tabular los resultados, pregunta tras pregunta y arrojar los siguientes resultados: Se trata de una investigacin descriptiva, se determina que el 55.09% satisface la hiptesis y el 44.91% no satisface la hiptesis, es decir que, las metodologas aplicadas por los docentes de matemtica del Colegio Tcnico Mons. Maximiliano Spiller de la ciudad de Tena, inciden de manera positiva en el rendimiento acadmico de los estudiantes, lo que se ve reflejado en un rendimiento bueno de los estudiantes. Con esto la hiptesis ha sido probada.

 

Conclusiones

       Las clases que se comparten en la institucin en la asignatura de matemtica permiten una participacin activa de los estudiantes en el proceso enseanza aprendizaje.

       Las clases de matemtica son comprendidas en su mayor parte por los estudiantes, sin embargo, en un porcentaje apreciable ameritan que estas sean reforzadas con el fin de obtener un grupo ms homogneo.

       Las clases de matemtica en la institucin son dictadas en cuanto a sus contenidos tericos, lo que le permite al estudiante tener una reserva de conocimientos para la resolucin de ejercicios propuestos.

       Los estudiantes de la institucin si tienen temor por la asignatura de matemtica. Entre las causas ms frecuentes estn: nervios, temor al profesor, poco dominio de los contenidos, temor por perder el ao, ejercicios complicados.

       Al comparar los resultados obtenidos en la pregunta 5 de la encuesta a los estudiantes que cuestiona sobre el rendimiento de los mismos en la asignatura de matemtica con las calificaciones que reposan en secretara, se ha podido constatar que tienen concordancia ya que las notas reales promedian 14.44 equivalente a bueno en el ao lectivo 2004 2005 y que son constantes en los aos anteriores a la investigacin.

       Los estudiantes de la institucin no estn de acuerdo con la calificacin impuesta por el profesor puesto que no refleja la cantidad y calidad de conocimientos que ellos poseen.

       Los profesores de matemtica brindan la suficiente apertura al estudiante para que ste tenga la libertad de participar activamente en el proceso de aprendizaje mutuo.

       Los profesores de matemtica en la institucin estn atentos en utilizar su creatividad para hacer de sus clases atractivas al inters del estudiante.

       La utilizacin del material didctico dentro del aula de clase es casi nula.

       En su mayor parte el profesor de matemtica considera las diferencias individuales de los estudiantes durante el proceso enseanza aprendizaje, lo que permite afianzar conocimientos.

       Los profesores, en su mayor parte, no toman en cuenta el estado anmico de los estudiantes durante el proceso de la construccin del conocimiento, sin embargo, gracias a la apertura que brindan, logran captar su atencin en el transcurso de la clase.

       El estudio muestra que los profesores estn atentos a la realidad contextual del medio en el que se desenvuelve el proceso enseanza aprendizaje, lo que hace que los ejemplos sean mayormente comprendidos por parte del estudiante.

       A pesar de que el proceso de la construccin del conocimiento el profesor lo lleva de buena manera, cabe indicar que en su mayor parte los estudiantes no estn de acuerdo con la forma de evaluar aplicada por los profesores, si tomamos en cuenta que la evaluacin es una parte muy importante dentro de la metodologa educativa, sta sera un causal para que el rendimiento se mantenga en bueno, pues si tomamos en cuenta los parmetros anteriores debera este ser mayor.

       De acuerdo al estudio encontramos que en el momento de evaluar, los maestros toman en cuenta en mayor proporcin el aspecto procedimental, seguido del aspecto cognitivo, por lo cual deducimos que una de las falencias en la evaluacin est relacionada con que los profesores dejan de lado el aspecto actitudinal del estudiantes, contradiciendo sus propios argumentos al indicar que sus clases son participativas, en ste aspecto el estudiante es un ente primordial en la construccin del conocimiento.

 

Recomendaciones

Teniendo como base el presente estudio, luego de un anlisis pormenorizado de los datos obtenidos y en concordancia con las conclusiones, me permito hacer las siguientes recomendaciones:

       Utilizar juegos didcticos ya que son materiales importantes que favorecen la adquisicin de conocimientos aprovechando la tendencia ldica del estudiante.

       El docente debe brindar una apertura total al estudiante dentro del proceso enseanza aprendizaje, ya que ste exige que el conocimiento sea construido por ambos y no slo por el profesor.

       Utilizar tcnicas de evaluacin apropiadas para medir conocimientos, competencias, habilidades y actitudes del estudiante.

Socializar la propuesta para que sta sea aplicada en el rea, con el propsito de desarrollar competencias matemticas en el estudiante.

 

Referencias

  1. Bermdez, C., Johanna, L., Dionicio, N., & Stefany, A. (2020). El aprendizaje significativo en las principales obras de David Ausubel : lectura desde la pedagoga. Universidad Pedaggica Nacional, 85.
  2. Borge, R. (13 de Febrero de 2005). Direccin General de Universidades. MEC. Obtenido de Competencias y diseo de la evaluacin continua y final en el Espacio Europeo de Educacin Superior.: https://d1wqtxts1xzle7.cloudfront.net/51135593/Competencias_y_diseo_de_la_evaluacin_con20161231-30229-1y72lb7-with-cover-page-v2.pdf?Expires=1658870312&Signature=fXzUgRLrqc94K547oIQzKIgGEzgkhQ0aR40avW912QKPdnsbaC9kBedh0fpiiBgexTzALcfgHY7eYM170Pm7cI8H94e1z
  3. Campanario Larguero, J. M. (2000). El desarrollo de la metacognicin en el aprendizaje de las ciencias : estrategias para el profesor y actividades orientadas al alumno. Redined, 369-380.
  4. Cervantes Garcia, L. (2017). Las orientaciones pedaggicas al educando en el proceso de enseanza y aprendizaje. Inca Garcilaso de la vega.
  5. Estrada Huancas, M. M. (2011). Modelo didctico para el desarrollo de competencias en matemtica en estudiantes de Agronoma en una universidad pblica de Lambayeque. Repositorio de la Universidad Csar Vallejo, 92.
  6. Gamow, G. (1960). Biografía de la física. D Space Repository, 312.
  7. HURTADO PALATE, J. M. (2014). La utilizacin del material didctico tangible en el desarrollo del aprendizaje de la asignatura de entorno natural de los nios y nias de segundo grado paralelos a y b de educacin bsica de la escuela fiscal repblica de venezuela ciudad de ambato, p. Repositorio Universidad Tcnica de Amabato, 154.
  8. Ivn Snchez Soto, M. A. (18 de Marzo de 2011). Dialnet. Obtenido de https://dialnet.unirioja.es/servlet/articulo?codigo=3696073
  9. Linares, A. R. (7 de Agosto de 2019). Desarrollo Cognitivo: Las Terias de Piaget y Vygotsky. Obtenido de http://www.paidopsiquiatria.cat/FILES/TEORIAS_DESARROLLO_COGNITIVO_0.PDF
  10. Lobo, J. O. (Enero de 2020). FACULTAD DE HUMANIDADES Y EDUCACION ESTUDIOS DE POSTGRADO PROGRAMA DE EDUCACION MENCION PROCESOS DE APRENDIZAJE. Obtenido de http://biblioteca2.ucab.edu.ve/anexos/biblioteca/marc/texto/AAU1087.pdf
  11. Lpez, Y. C. (18 de Enero de 2019). Reflexiones en torno a la enseanza del diseo grfico: Un acercamiento a las prcticas pedaggicas de los docentes de diseo. Obtenido de DISEOCONCIENCIA: http://ftp.isdi.co.cu/biblioteca/biblioteca%20universitaria%20del%20isdi/COLECCION%20DIGITAL%20DE%20OBRAS%20DE%20REFERENCIA/2017/P-0161/P-0161.pdf
  12. Manrique, C. R., & Puente, R. M. (1999). EL CONSTRUCTIVISMO Y SUS IMPLICANCIAS EN EDUCACIN . Lima: Pontificia Universidad Catlica del Per.
  13. Martnez Martnez, M., Illueca Ballester, J. E., Martnez Aroca, N., & Rodrguez Santos, J. M. (2007). Educar en la responsabilidad para responder a los desafos de la sociedad actual : la experiencia del IES Diego Tortosa. Red de Informacin Educativa, 156.
  14. Mora Echeverry, J. (2013). Estilos cognitivos en nios y nias en condicin de exposicin al bilinguismo. RIDUM.
  15. Palmero, M. L. (2011). La teora del aprendizaje significativo. Dialnet, 29-50.
  16. Pollio Rojas, M. H. (2008). Programa mnmico cognitivo para mejorar los procesos de la memoria de los alumnos del primer ao de las escuelas acadmico profesionales de educacin inicial de las facultades de educacin de la unt, upao y ucv. Universidad Nacional de Trujillo, 151.
  17. Rodrguez Amores, C. F. (2015). La aplicacin de talleres prcticos y su incidencia en el desarrollo del aprendizaje en las alumnas de 3ero de bachillerato paralelo A. Universidad Tcnica de Babahoyo.
  18. Rodrguez, M. E. (18 de Junio de 2020). SERENDIPIANDO CON LOS PROCESOS MENTALES DE LA MATEMTICA EN LA COMPLEJIDAD EN SENTIPENSAR DECOLONIAL . Obtenido de https://www.researchgate.net/profile/Milagros-Rodriguez-5/publication/343231190_SERENDIPIANDO_WITH_THE_MENTAL_PROCESSES_OF_MATHEMATICS_IN_THE_COMPLEXITY_IN_DECOLONIAL_FEELING_SERENDIPIANDO_COM_OS_PROCESSOS_MENTAIS_DE_MATEMATICA_NA_COMPLEXIDADE_NO_SENTIDO_
  19. Snchez, J. C. (2004). Metodologa de la investigacin cientfica y tcnolgica. Madrid : Daz de Santos.
  20. Villarroel, S., & Sgreccia, N. (2011). Materiales didcticos concretos en geometra en primer ao de secundaria. Repositorio Universidad de los Andes, 73-94 .

 

 

2022 por los autores. Este artculo es de acceso abierto y distribuido segn los trminos y condiciones de la licencia Creative Commons Atribucin-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)

(https://creativecommons.org/licenses/by-nc-sa/4.0/).

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/