La radiación ionizante gamma y usos actuales en ciencias agrícolas, oportunidades para los cultivos andinos: Breve revisión
Resumen
El objetivo de este trabajo de investigación fue revisar el estado del arte sobre los efectos biológicos causados por la radiación ionizante gamma en los vegetales y la evaluación de la radiación como una tecnología de control de infecciones por microorganismos patógenos en cultivos andinos. Los efectos de la radiación gamma se manifiestan a nivel genético y fenotípico, debido a la interacción directa de los fotones con el ADN y las especies reactivas de oxígeno (ROS). Sin embargo, las plantas son organismos que presentan un nivel de radioresistencia, para ello, activan enzimas antioxidantes para contrarrestar el estrés oxidativo, mantienen estabilidad genómica al ser organismos poliploides, inhiben las mutaciones y reparan el daño en el ADN por recombinación homóloga. Los efectos adversos o benéficos dependen de la tasa de dosis suministrada y las características de las plantas como: especie, estructura de tejido, etapa de desarrollo y el tipo de genoma. Para la revisión de la literatura científica de calidad, se adaptó un algoritmo de minado de artículos en Google Colab Jupyter notebook. En la revisión se ha encontrado que la aplicación de la irradiación gamma en semillas causa efecto mutagénico que estimula el crecimiento, desarrollo, resistencia de enfermedades y condiciones ambientales de estrés. Asimismo, en la aplicación fitosanitaria, resulta una técnica física eficiente por la capacidad de penetración y los efectos no significativos en las cualidades organolépticas-sensoriales de los productos agrícolas que son irradiados contra la infestación por microorganismos patógenos. La irradiación aplicada (0 a 5 kGy), reduce la carga microbiana a límites no detectables, por ello es una técnica con potencial para ser utilizado en la desinfección y conservación durante el almacenamiento de los productos andinos, cultivos con altas cualidades nutricionales.
Palabras clave
Referencias
Achari, G. A., & Kowshik, M. (2018). Recent Developments on Nanotechnology in Agriculture: Plant Mineral Nutrition, Health, and Interactions with Soil Microflora [Review-article]. Journal of Agricultural and Food Chemistry, 66(33), 8647–8661. https://doi.org/10.1021/acs.jafc.8b00691
Alghamian, Y., Abou Alchamat, G., Murad, H., & Madania, A. (2017). Effects of γ-radiation on cell growth, cell cycle and promoter methylation of 22 cell cycle genes in the 1321NI astrocytoma cell line. Advances in Medical Sciences, 62(2), 330–337. https://doi.org/10.1016/j.advms.2017.03.004
Amirikhah, R., Etemadi, N., Sabzalian, M. R., Nikbakht, A., & Eskandari, A. (2019). Physiological consequences of gamma ray irradiation in tall fescue with elimination potential of Epichloë fungal endophyte. Ecotoxicology and Environmental Safety, 182(June), 1–10. https://doi.org/10.1016/j.ecoenv.2019.109412
Amri-Tiliouine, W., Laouar, M., Abdelguerfi, A., Jankowicz-Cieslak, J., Jankuloski, L., & Till, B. J. (2018). Genetic variability induced by gamma rays and preliminary results of low-cost TILLING on M2 generation of chickpea (cicer arietinum L.). Frontiers in Plant Science, 871(October), 1–15. https://doi.org/10.3389/fpls.2018.01568
Beresford, N. A., Fesenko, S., Konoplev, A., Skuterud, L., Smith, J. T., & Voigt, G. (2016). Thirty years after the Chernobyl accident: What lessons have we learnt? Journal of Environmental Radioactivity, 157, 77–89. https://doi.org/10.1016/j.jenvrad.2016.02.003
Beyaz, R., Kahramanogullari, C. T., Yildiz, C., Darcin, E. S., & Yildiz, M. (2016). The effect of gamma radiation on seed germination and seedling growth of Lathyrus chrysanthus Boiss. under in vitro conditions. Journal of Environmental Radioactivity, 162–163, 129–133. https://doi.org/10.1016/j.jenvrad.2016.05.006
Cao, Y., Bie, T., Wang, X., & Chen, P. (2009). Induction and transmission of wheat-Haynaldia villosa chromosomal translocations. Journal of Genetics and Genomics, 36(5), 313–320. https://doi.org/10.1016/S1673-8527(08)60120-4
Caplin, N., & Willey, N. (2018). Ionizing radiation, higher plants, and radioprotection: From acute high doses to chronic low doses. Frontiers in Plant Science, 9(June), 1–20. https://doi.org/10.3389/fpls.2018.00847
Corrales Lerma, R., Avendaño Arrazate, C. H., Morales Nieto, C. R., Santellano Estrada, E., Villarreal Guerrero, F., Melgoza Castillo, A., Álvarez Holguín, A., & Gómez Simuta, Y. (2019). Radiación gamma para inducción de mutagénesis en pasto rosado [Melinis repens (Willd.) Zizka]. Acta Universitaria, 29, 1–10. https://doi.org/10.15174/au.2019.1847
Correa, W., Brandenburg, J., Behrends, J., Heinbockel, L., Reiling, N., Paulowski, L., Schwudke, D., Stephan, K., Martinez-de-Tejada, G., Brandenburg, K., & Gutsmann, T. (2019). Inactivation of Bacteria by γ-Irradiation to Investigate the Interaction with Antimicrobial Peptides. Biophysical Journal, 117(10), 1805–1819. https://doi.org/10.1016/j.bpj.2019.10.012
De Micco, V., Arena, C., Pignalosa, D., & Durante, M. (2011). Effects of sparsely and densely ionizing radiation on plants. Radiation and Environmental Biophysics, 50(1), 1–19. https://doi.org/10.1007/s00411-010-0343-8
Del Prado-Lu, J. L. (2007). Pesticide exposure, risk factors and health problems among cutflower farmers: A cross sectional study. Journal of Occupational Medicine and Toxicology, 2(1), 1–8. https://doi.org/10.1186/1745-6673-2-9
Derks, F. H. M., & Hall, R. D. (1992). Effect of gamma irradiation on protoplast viability and chloroplast and damage in lycopersicon peruvianum with respect to donor recipient protoplast fusion. 32(3), 255–264.
Douglas, G. L., Zwart, S. R., & Smith, S. M. (2020). Space food for thought: Challenges and considerations for food and nutrition on exploration missions. Journal of Nutrition, 150(9), 2242–2244. https://doi.org/10.1093/jn/nxaa188
Fan, J., Shi, M., Huang, J. Z., Xu, J., Wang, Z. D., & Guo, D. P. (2014). Regulation of photosynthetic performance and antioxidant capacity by 60Co γ-irradiation in Zizania latifolia plants. Journal of Environmental Radioactivity, 129, 33–42. https://doi.org/10.1016/j.jenvrad.2013.11.013
Fan, X., & Sokorai, K. J. B. (2008). Retention of quality and nutritional value of 13 fresh-cut vegetables treated with low-dose radiation. Journal of Food Science, 73(7). https://doi.org/10.1111/j.1750-3841.2008.00871.x
Feng, K., Divers, E., Ma, Y., & Li, J. (2011). Inactivation of a human norovirus surrogate, human norovirus virus-like particles, and vesicular stomatitis virus by Gamma irradiation. Applied and Environmental Microbiology, 77(10), 3507–3517. https://doi.org/10.1128/AEM.00081-11
Fuentes, C., Perez-Rea, D., Bergenståhl, B., Carballo, S., Sjöö, M., & Nilsson, L. (2019). Physicochemical and structural properties of starch from five Andean crops grown in Bolivia. International Journal of Biological Macromolecules, 125, 829–838. https://doi.org/10.1016/j.ijbiomac.2018.12.120
Gomes, C., Da Silva, P., Moreira, R. G., Castell-Perez, E., Ellis, E. A., & Pendleton, M. (2009). Understanding E. coli internalization in lettuce leaves for optimization of irradiation treatment. International Journal of Food Microbiology, 135(3), 238–247. https://doi.org/10.1016/j.ijfoodmicro.2009.08.026
Gómez-Pando, L., Eguiluz, A., Jimenez, J., Falconí, J., & Heors Aguilar, E. (2009). Barley ( Hordeun vulgare ) and Kiwicha ( Amaranthus caudatus ) Improvement by Mutation Induction in Peru. Induced Plant Mutations in the Genomics Era. Food and Agriculture Organization of the United Nations, 330–332.
Gudkov, S. V., Grinberg, M. A., Sukhov, V., & Vodeneev, V. (2019). Effect of ionizing radiation on physiological and molecular processes in plants. Journal of Environmental Radioactivity, 202(January), 8–24. https://doi.org/10.1016/j.jenvrad.2019.02.001
Guoping, Z., Lili, R., Ying, S., Qiaoling, W., Daojian, Y., Yuejin, W., & Tianxiu, L. (2015). Gamma irradiation as a phytosanitary treatment of bactrocera tau (Diptera: Tephritidae) in pumpkin fruits. Journal of Economic Entomology, 108(1), 88–94. https://doi.org/10.1093/jee/tou013
Hell, K. G. (1983). Survival of Nicotiana tabacum wisconsin-38 plants regenerated from gamm a irradiated tissue cultures. 23(2), 139–142.
Hong, M. J., Kim, J. B., Yoon, Y. H., Kim, S. H., Ahn, J. W., Jeong, I. Y., Kang, S. Y., Seo, Y. W., & Kim, D. S. (2014). The effects of chronic gamma irradiation on oxidative stress response and the expression of anthocyanin biosynthesis-related genes in wheat (Triticum aestivum). International Journal of Radiation Biology, 90(12), 1218–1228. https://doi.org/10.3109/09553002.2014.934930
Horn, L. N., Ghebrehiwot, H. M., & Shimelis, H. A. (2016). Selection of novel cowpea genotypes derived through gamma irradiation. Frontiers in Plant Science, 7(MAR2016), 1–13. https://doi.org/10.3389/fpls.2016.00262
Huarancca Reyes, T., Scartazza, A., Castagna, A., Cosio, E. G., Ranieri, A., & Guglielminetti, L. (2018). Physiological effects of short acute UVB treatments in Chenopodium quinoa Willd. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-017-18710-2
Jan, S., Parween, T., Siddiqi, T. O., & Mahmooduzzafar, X. (2012). Effect of gamma radiation on morphological, biochemical, and physiological aspects of plants and plant products. Environmental Reviews, 20(1), 17–39. https://doi.org/10.1139/a11-021
Jeong, R. D., & Choi, H. S. (2017). Inactivation of tobacco mosaic virus using gamma irradiation and its potential modes of action. Acta Virologica, 61(2), 223–225. https://doi.org/10.4149/av_2017_02_14
Jeong, S. G., & Kang, D. H. (2017). Inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in ready-to-bake cookie dough by gamma and electron beam irradiation. Food Microbiology, 64, 172–178. https://doi.org/10.1016/j.fm.2016.12.017
Jiang, C., Kan, J., Ordon, F., Perovic, D., & Yang, P. (2020). Bymovirus-induced yellow mosaic diseases in barley and wheat: viruses, genetic resistances and functional aspects. Theoretical and Applied Genetics, 133(5), 1623–1640. https://doi.org/10.1007/s00122-020-03555-7
Jung, I. J., Ahn, J. W., Jung, S., Hwang, J. E., Hong, M. J., Choi, H. Il, & Kim, J. B. (2019). Overexpression of rice jacalin-related mannose-binding lectin (OsJAC1) enhances resistance to ionizing radiation in Arabidopsis. BMC Plant Biology, 19(1), 1–16. https://doi.org/10.1186/s12870-019-2056-8
Kim, D. Y., Hong, M. J., Park, C. S., & Seo, Y. W. (2015). The effects of chronic radiation of gamma ray on protein expression and oxidative stress in Brachypodium distachyon. International Journal of Radiation Biology, 91(5), 407–419. https://doi.org/10.3109/09553002.2015.1012307
Kim, J. H., Ryu, T. H., Lee, S. S., Lee, S., & Chung, B. Y. (2019). Ionizing radiation manifesting DNA damage response in plants: An overview of DNA damage signaling and repair mechanisms in plants. Plant Science, 278(September 2018), 44–53. https://doi.org/10.1016/j.plantsci.2018.10.013
Kim, Sang Hoon, Jo, Y. D., Ryu, J., Hong, M. J., Kang, B. C., & Kim, J. B. (2019). Effects of the total dose and duration of γ-irradiation on the growth responses and induced SNPs of a Cymbidium hybrid. International Journal of Radiation Biology, 96(4), 545–551. https://doi.org/10.1080/09553002.2020.1704303
Kim, Sang Hoon, Kim, Y. S., Lee, H. J., Jo, Y. D., Kim, J. B., & Kang, S. Y. (2019). Biological effects of three types of ionizing radiation on creeping bentgrass. International Journal of Radiation Biology, 95(9), 1–6. https://doi.org/10.1080/09553002.2019.1619953
Kim, Sun Hee, Song, M., Lee, K. J., Hwang, S. G., Jang, C. S., Kim, J. B., Kim, S. H., Ha, B. K., Kang, S. Y., & Kim, D. S. (2012). Genome-wide transcriptome profiling of ROS scavenging and signal transduction pathways in rice (Oryza sativa L.) in response to different types of ionizing radiation. Molecular Biology Reports, 39(12), 11231–11248. https://doi.org/10.1007/s11033-012-2034-9
Kodym, A., & Afza, R. (2003). Physical and chemical mutagenesis. Methods in Molecular Biology (Clifton, N.J.), 236(2), 189–204. https://doi.org/10.1385/1-59259-413-1:189
Kovács, E., & Keresztes. (2002). Effect of gamma and UV-B/C radiation on plant cells. Micron, 33(2), 199–210. https://doi.org/10.1016/S0968-4328(01)00012-9
Kovalchuk, I., Kovalchuk, O., & Hohn, B. (2000). Genome-wide variation of the somatic mutation frequency in transgenic plants. EMBO Journal, 19(17), 4431–4438. https://doi.org/10.1093/emboj/19.17.4431
Kudo, H. (2011). Radiation applications. In Physics Today (Vol. 7, Issue 4). https://doi.org/10.1063/1.3051538
Li, F., Shimizu, A., Nishio, T., Tsutsumi, N., & Kato, H. (2019). Comparison and characterization of mutations induced by gamma-ray and carbon-ion irradiation in rice (Oryza sativa L.) using whole-genome resequencing. G3: Genes, Genomes, Genetics, 9(11), 3743–3751. https://doi.org/10.1534/g3.119.400555
Li, H., & Wang, X. (2009). Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. Journal of Genetics and Genomics, 36(9), 557–565. https://doi.org/10.1016/S1673-8527(08)60147-2
Ludovici, G. M., Oliveira de Souza, S., Chierici, A., Cascone, M. G., d’Errico, F., & Malizia, A. (2020). Adaptation to ionizing radiation of higher plants: From environmental radioactivity to chernobyl disaster. Journal of Environmental Radioactivity, 222(July), 106375. https://doi.org/10.1016/j.jenvrad.2020.106375
Manova, V., & Gruszka, D. (2015). DNA damage and repair in plants – From models to crops. Frontiers in Plant Science, 6(OCTOBER), 1–26. https://doi.org/10.3389/fpls.2015.00885
Marcu, D., Cristea, V., & Daraban, L. (2013). Dose-dependent effects of gamma radiation on lettuce (Lactuca sativa var. capitata) seedlings. International Journal of Radiation Biology, 89(3), 219–223. https://doi.org/10.3109/09553002.2013.734946
Marcu, D., Damian, G., Cosma, C., & Cristea, V. (2013). Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays). Journal of Biological Physics, 39(4), 625–634. https://doi.org/10.1007/s10867-013-9322-z
Meyhuay, M. (2000). QUINUA, Operaciones de Poscosecha. Organización de Naciones Unidas Para La Agricultura y La Alimentación (FAO), 35. http://www.fao.org/3/a-ar364s.pdf
Mie, A., Andersen, H. R., Gunnarsson, S., Kahl, J., Kesse-Guyot, E., Rembiałkowska, E., Quaglio, G., & Grandjean, P. (2017). Human health implications of organic food and organic agriculture: A comprehensive review. Environmental Health: A Global Access Science Source, 16(1), 1–22. https://doi.org/10.1186/s12940-017-0315-4
Ministerio de Salud Pública. (2019). Vigilancia Sive- Alerta Enfermedades Transmitidas Por Agua Y Alimentos Ecuador, Se 1-23, 2019. Subsecretaria De Vigilancia De La Salud Publica Direccion Nacional De Vigilancia Epidemiologica, 1, 1–6.
Molina-Chavarria, A., Félix-Valenzuela, L., Silva-Campa, E., & Mata-Haro, V. (2020). Evaluation of gamma irradiation for human norovirus inactivation and its effect on strawberry cells. International Journal of Food Microbiology, 330. https://doi.org/10.1016/j.ijfoodmicro.2020.108695
Mujica, A., & Jacobsen, S. (2006). La quinua (Chenopodium quinoa Willd.) y sus parientes silvestres. Botánica Económica de Los Andes Centrales, 449–457. http://www.beisa.dk/Publications/BEISA Book pdfer/Capitulo 27.pdf
Mukhopadhyay, S., Ukuku, D., Fan, X., & Juneja, V. K. (2013). Efficacy Of integrated treatment of Uv light and low-dose gamma irradiation on inactivation of Escherichia coli O157:H7 and salmonella enterica on grape tomatoes. Journal of Food Science, 78(7). https://doi.org/10.1111/1750-3841.12154
Naito, K., Kusaba, M., Shikazono, N., Takano, T., Tanaka, A., Tanisaka, T., & Nishimura, M. (2005). Transmissible and nontransmissible mutations induced by irradiating Arabidopsis thaliana pollen with γ-rays and carbon ions. Genetics, 169(2), 881–889. https://doi.org/10.1534/genetics.104.033654
Obodovskiy, I. (2019). Nuclei and Nuclear Radiations. Radiation, 41–62. https://doi.org/10.1016/b978-0-444-63979-0.00002-1
Pimenta, A. I., Guerreiro, D., Madureira, J., Margaça, F. M. A., & Cabo Verde, S. (2016). Tracking human adenovirus inactivation by gamma radiation under different environmental conditions. Applied and Environmental Microbiology, 82(17), 5166–5173. https://doi.org/10.1128/AEM.01229-16
Prasad, B., Richter, P., Vadakedath, N., Mancinelli, R., Krüger, M., Strauch, S. M., Grimm, D., Darriet, P., Chapel, J. P., Cohen, J., & Lebert, M. (2020). Exploration of space to achieve scientific breakthroughs. Biotechnology Advances, 43, 107572. https://doi.org/10.1016/j.biotechadv.2020.107572
RaheliNamin, B., Mortazavi, S., & Salmanmahiny, A. (2016). Optimizing cultivation of agricultural products using socio-economic and environmental scenarios. Environmental Monitoring and Assessment, 188(11). https://doi.org/10.1007/s10661-016-5599-2
Rose, K. S. B. (1992). Lower limits of radiosensitivity in organisms, excluding man. Journal of Environmental Radioactivity, 15(2), 113–133. https://doi.org/10.1016/0265-931X(91)90047-J
Ryu, T. H., Kim, J. K., Kim, J. Il, & Kim, J. H. (2018). Transcriptome-based biological dosimetry of gamma radiation in Arabidopsis using DNA damage response genes. Journal of Environmental Radioactivity, 181(November 2017), 94–101. https://doi.org/10.1016/j.jenvrad.2017.11.007
Sandle, T. (2013). Gamma radiation. Sterility, Sterilisation and Sterility Assurance for Pharmaceuticals, 55–68. https://doi.org/10.1533/9781908818638.55
Shankar, S., Follett, P., Ayari, S., Hossain, F., Salmieri, S., & Lacroix, M. (2020). Microbial radiosensitization using combined treatments of essential oils and irradiation- part B: Comparison between gamma-ray and X-ray at different dose rates. Microbial Pathogenesis, 143(February), 104118. https://doi.org/10.1016/j.micpath.2020.104118
Shuryak, I., Tkavc, R., Matrosova, V. Y., Volpe, R. P., Grichenko, O., Klimenkova, P., Conze, I. H., Balygina, I. A., Gaidamakova, E. K., & Daly, M. J. (2019). Chronic gamma radiation resistance in fungi correlates with resistance to chromium and elevated temperatures, but not with resistance to acute irradiation. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-47007-9
Sidler, C., Li, D., Kovalchuk, O., & Kovalchuk, I. (2015). Development-dependent expression of DNA repair genes and epigenetic regulators in arabidopsis plants exposed to ionizing radiation. Radiation Research, 183(2), 219–232. https://doi.org/10.1667/RR13840.1
Sommers, C. H., Scullen, O. J., & Sheen, S. (2016). Inactivation of uropathogenic Escherichia coli in ground chicken meat using high pressure processing and gamma radiation, and in purge and chicken meat surfaces by ultraviolet light. Frontiers in Microbiology, 7(APR), 8–13. https://doi.org/10.3389/fmicb.2016.00413
Song, W. J., Kim, Y. H., & Kang, D. H. (2019). Effect of gamma irradiation on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes on pistachios. Letters in Applied Microbiology, 68(1), 96–102. https://doi.org/10.1111/lam.13095
Tallentire, A. (1980). The spectrum of microbial radiation sensitivity. Radiation Physics and Chemistry, 15(1), 83–89. https://doi.org/10.1016/0146-5724(80)90101-6
Turtoi, M. (2013). Ultraviolet light treatment of fresh fruits and vegetables surface: A review. Journal of Agroalimentary Processes and Technologies, 19(3), 325–337.
Verde, S. C., Silva, T., & Matos, P. (2016). Effects of gamma radiation on wastewater microbiota. Radiation and Environmental Biophysics, 55(1), 125–131. https://doi.org/10.1007/s00411-015-0617-2
Yashar, C. M. (2018). Basic principles in gynecologic radiotherapy. In Clinical Gynecologic Oncology (Ninth Edit). Elsevier Inc. https://doi.org/10.1016/B978-0-323-40067-1.00023-1
Yasmin, K., Arulbalachandran, D., Dilipan, E., & Vanmathi, S. (2020). Characterization of 60CO γ-ray induced pod trait of blackgram-A promising yield mutants. International Journal of Radiation Biology, 96(7), 929–936. https://doi.org/10.1080/09553002.2020.1748738
Young Lee, N., Jo, C., Hwa Shin, D., Geun Kim, W., & Woo Byun, M. (2006). Effect of γ-irradiation on pathogens inoculated into ready-to-use vegetables. Food Microbiology, 23(7), 649–656. https://doi.org/10.1016/j.fm.2005.12.001
Zanzibar, M., & J. Sudrajat, D. (2016). Effect of gamma irradiation on seed germination, storage, and seedling growth of Magnolia champaca L. Indonesian Journal of Forestry Research, 3(2), 95–106. https://doi.org/10.20886/ijfr.2016.3.2.95-106
Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N. A., & Munné-Bosch, S. (2019). Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Science, 289(July). https://doi.org/10.1016/j.plantsci.2019.110270
DOI: https://doi.org/10.23857/pc.v6i6.2761
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/