Perfil de Resistencia de Pseudomonas aeruginosa por infección nosocomial en pacientes atendidos en el Hospital de Infectología Guayaquil 2020 – 2023
Resumen
Palabras clave
Referencias
1.Shafer CW, Allison JR, Hogue AL, Huntington MK. Infectious Disease: Health Care-Associated Infections. FP Essent. 2019; 476:30-42. PMID: 30615408.
2.Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022;7(1):199. doi: 10.1038/s41392-022-01056-1. PMID: 35752612; PMCID: PMC9233671.
Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022; 400(10358):1102. doi: 10.1016/S0140-6736(21)02653-2. PMID: 35065702; PMCID: PMC8841637.
Antimicrobial Resistance Collaborators. The burden of bacterial antimicrobial resistance in the WHO African region in 2019: a cross-country systematic analysis. Lancet Glob Health. 2024;12(2): e201-e216. doi: 10.1016/S2214-109X(23)00539-9. PMID: 38134946; PMCID: PMC10805005.
Li Y, Roberts JA, Walker MM, Aslan AT, Harris PNA, Sime FB. The global epidemiology of ventilator-associated pneumonia caused by multi-drug resistant Pseudomonas aeruginosa: A systematic review and meta-analysis. Int J Infect Dis. 2024; 139:78-85. doi: 10.1016/j.ijid.2023.11.023. PMID: 38013153.
Kollef MH, Torres A, Shorr AF, Martin-Loeches I, Micek ST. Nosocomial Infection. Crit Care Med. 2021;49(2):169-187. doi: 10.1097/CCM.0000000000004783. PMID: 33438970.
Kaier K, Heister T, Götting T, Wolkewitz M, Mutters NT. Measuring the in-hospital costs of Pseudomonas aeruginosa pneumonia: methodology and results from a German teaching hospital. BMC Infect Dis. 2019; 19(1):1028. doi: 10.1186/s12879-019-4660-5. PMID: 31795953; PMCID: PMC6888947.
Motbainor H, Bereded F, Mulu W. Multi-drug resistance of blood stream, urinary tract and surgical site nosocomial infections of Acinetobacter baumannii and Pseudomonas aeruginosa among patients hospitalized at Felegehiwot referral hospital, Northwest Ethiopia: a cross-sectional study. BMC Infect Dis. 2020; 20(1):92. doi: 10.1186/s12879-020-4811-8. PMID: 32000693; PMCID: PMC6993407.
Ministerio de Salud Pública. Ecuador. Boletín Epidemiológico. Infecciones Asociadas a la Atención en Salud (IAAS) 2018-2021. Disponible en: https://www.salud.gob.ec/wp-content/uploads/2023/06/boletin_iaas_2018-2021_final-mazo0822513001681950144.pdf
World Bank. Drug-resistant infections: a threat to our economic future. World Bank; 2017. Disponible en https://www.worldbank.org/en/topic/health/publication/drug-resistant-infections-a-threat-to-our-economic-future.
World Health Organization. WHO. Antimicrobial resistance. 2023. Disponible en: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.
World Health Organization. WHO. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. 2017. Disponible en: https://remed.org/wp-content/uploads/2017/03/lobal-priority-list-of-antibiotic-resistant-bacteria-2017.pdf
Liu X, Shi D, Cheng S, Chen X, Ma C, Jiang Y, et al. Modification and synergistic studies of a novel frog antimicrobial peptide against Pseudomonas aeruginosa biofilms. Antibiotics (Basel). 2024;13(7):574. doi: 10.3390/antibiotics13070574. PMID: 39061256; PMCID: PMC11274128.
Yasir M, Dutta D, Willcox MDP. Activity of antimicrobial peptides and ciprofloxacin against Pseudomonas aeruginosa biofilms. Molecules. 2020; 25(17):3843. doi: 10.3390/molecules25173843. PMID: 32847059; PMCID: PMC7503749.
Contreras-Martínez OI, Sierra-Quiroz D, Angulo-Ortíz A. Antibacterial and Antibiofilm Potential of Ethanolic Extracts of Duguetia vallicola (Annonaceae) against in-Hospital Isolates of Pseudomonas aeruginosa. Plants (Basel). 2024;13(10):1412. doi: 10.3390/plants13101412. PMID: 38794482; PMCID: PMC11126144.
Saeli N, Jafari-Ramedani S, Ramazanzadeh R, Nazari M, Sahebkar A, Khademi F. Prevalence and mechanisms of aminoglycoside resistance among drug-resistant Pseudomonas aeruginosa clinical isolates in Iran. BMC Infect Dis. 2024; 24(1):680. doi: 10.1186/s12879-024-09585-6. PMID: 38982386; PMCID: PMC11232330.
Wang X, Gao K, Chen C, Zhang C, Zhou C, Song Y, et al. Prevalence of the virulence genes and their correlation with carbapenem resistance amongst the Pseudomonas aeruginosa strains isolated from a tertiary hospital in China. Antonie Van Leeuwenhoek. 2023;116(12):1395-1406. doi: 10.1007/s10482-023-01869-2. PMID: 37847452; PMCID: PMC10645663.
Ministerio de Salud Pública. Ecuador. Instituto Nacional de Investigación en Salud Pública. Reporte de datos de resistencia a los antimicrobianos en Ecuador. Informe de datos sobre resistencia a antimicrobianos en Ecuador 2014-2018. Quito. 2018. Disponible en: https://www.salud.gob.ec/wp-content/uploads/2019/08/gaceta_ram2018.pdf
Salinas L, Cárdenas P, Johnson TJ, Vasco K, Graham J, Trueba G. Diverse Commensal Escherichia coli clones and plasmids disseminate antimicrobial resistance genes in domestic animals and children in a semirural community in Ecuador. mSphere. 2019;4(3): e00316-19. doi: 10.1128/mSphere.00316-19. PMID: 31118304; PMCID: PMC6531886.
Ministerio de Salud Pública. Ecuador. Plan Nacional para la Prevención y Control de la Resistencia Antimicrobiana (RAM) 2019-2023. Quito. 2019. Disponible en: https://www.salud.gob.ec/wp-content/uploads/2019/10/Plan-Nacional-para-la-prevención-y-control-de-la-resistencia-antimicrobiana_2019_compressed.pdf
Satán C, Satyanarayana S, Shringarpure K, Mendoza-Ticona A, Palanivel C, Jaramillo K, et al. Epidemiology of antimicrobial resistance in bacteria isolated from inpatient and outpatient samples, Ecuador, 2018. Rev Panam Salud Publica. 2023;47: e14. doi: 10.26633/RPSP.2023.14. PMID: 37082535; PMCID: PMC10105596.
Soria-Segarra C, Soria-Segarra C, Molina-Matute M, Agreda-Orellana I, Núñez-Quezada T, Cevallos-Apolo K, et al. Molecular epidemiology of carbapenem-resistant gram-negative bacilli in Ecuador. BMC Infect Dis. 2024;24(1):378. doi: 10.1186/s12879-024-09248-6. PMID: 38582858; PMCID: PMC10998298.
Avello P, Collins LM, Gómez SA, Luna F, Fernández Miyakawa ME, West HM, et al. National action plans on antimicrobial resistance in Latin America: an analysis via a governance framework. Health Policy Plan. 2024; 39(2):188-197. doi: 10.1093/heapol/czad118. PMID: 38179856; PMCID: PMC10883663.
Organización de las Naciones Unidas. Objetivos de Desarrollo Sostenible. ODS agenda 2030. 2015. Disponible en: https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/
Secretaria Nacional de Planificación. República del Ecuador. 2021. Plan de Creación de Oportunidades 2021-2025. Disponible en: https://www.planificacion.gob.ec/wp-content/uploads/2021/09/Plan-de-Creacio%CC%81n-de-Oportunidades-2021-2025-Aprobado.pdf
Kula BE, Hudson D, Sligl WI. Pseudomonas aeruginosa infection in intensive care: Epidemiology, outcomes, and antimicrobial susceptibilities. J Assoc Med Microbiol Infect Dis Can. 2020;5(3):130-138. doi: 10.3138/jammi-2020-0003. PMID: 36341317; PMCID: PMC9608728.
Reynolds D, Kollef M. The Epidemiology and Pathogenesis and Treatment of pseudomonas aeruginosa infections: An Update. Drugs. 2021;81(18):2117-2131. doi: 10.1007/s40265-021-01635-6. PMID: 34743315; PMCID: PMC8572145.
Wang J, Zhang H, Yan J, Zhang T. Literature review on the distribution characteristics and antimicrobial resistance of bacterial pathogens in neonatal sepsis. J Matern Fetal Neonatal Med. 2022;35(5):861-870. doi: 10.1080/14767058.2020.1732342. PMID: 32102584.
Ng QX, Ong NY, Lee DYX, Yau CE, Lim YL, Kwa ALH, et al. Trends in Pseudomonas aeruginosa (P. aeruginosa) bacteremia during the COVID-19 Pandemic: A Systematic Review. Antibiotics (Basel). 2023; 12(2):409. doi: 10.3390/antibiotics12020409. PMID: 36830319; PMCID: PMC9952731.
Asamenew T, Worku S, Motbainor H, Mekonnen D, Deribe A. Antimicrobial Resistance Profile of Pseudomonas aeruginosa from Different Clinical Samples in Debre Tabor Comprehensive Specialized Hospital, Northwest Ethiopia. Ethiop J Health Sci. 2023; 33(3):423-432. doi: 10.4314/ejhs.v33i3.5. PMID: 37576170; PMCID: PMC10416326.
Phan S, Feng CH, Huang R, Lee ZX, Moua Y, Phung OJ, et al. Relative Abundance and Detection of Pseudomonas aeruginosa from Chronic Wound Infections Globally. Microorganisms. 2023;11(5):1210. doi: 10.3390/microorganisms11051210. PMID: 37317184; PMCID: PMC10222620.
Sophonsri A, Kelsom C, Lou M, Nieberg P, Wong-Beringer A. Risk factors and outcome associated with coinfection with carbapenem-resistant Klebsiella pneumoniae and carbapenem-resistant Pseudomonas aeruginosa or Acinetobacter baumanii: a descriptive analysis. Front Cell Infect Microbiol. 2023; 13:1231740. doi: 10.3389/fcimb.2023.1231740. PMID: 37908764; PMCID: PMC10613969.
Sendra E, Fernández-Muñoz A, Zamorano L, Oliver A, Horcajada JP, Gómez-Zorrilla S. Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: a microbiological and clinical perspective. Infection. 2024; 52(4):1235-1268. doi: 10.1007/s15010-024-02313-x. PMID: 38954392; PMCID: PMC11289218.
Pezzani MD, Arieti F, Rajendran NB, Barana B, Cappelli E, De Rui ME, et al. Frequency of bloodstream infections caused by six key antibiotic-resistant pathogens for prioritization of research and discovery of new therapies in Europe: a systematic review. Clin Microbiol Infect. 2024;30 Suppl 1: S4-S13. doi: 10.1016/j.cmi.2023.10.019. PMID: 38007387.
Gupta M, Gupta V, Gupta R, Chaudhary J. Current trends in antimicrobial resistance of ESKAPEEc pathogens from bloodstream infections - Experience of a tertiary care centre in North India. Indian J Med Microbiol. 2024:100662. doi: 10.1016/j.ijmmb.2024.100662. PMID: 38871082.
Sahuanay Blácido Z, Ugarte Silva RG, Quispe Manco MC, Cruzado Risso NB, Patiño Gabriel L. Pseudomonas aeruginosa con doble carbapenemasa tipo IMP y KPC en un hospital pediátrico de Lima, Perú. An Fac Med. 2024; 85(1): 97-98. http://dx.doi.org/10.15381/anales.v85i1.26735.
Sikora A, Zahra F. Nosocomial Infections. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. PMID: 32644738.
Magill SS, O'Leary E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, et al; Emerging Infections Program Hospital Prevalence Survey Team. Changes in Prevalence of Health Care-Associated Infections in U.S. Hospitals. N Engl J Med. 2018; 379(18):1732-1744. doi: 10.1056/NEJMoa1801550. PMID: 30380384; PMCID: PMC7978499.
Thorpe HA, Pesonen M, Corbella M, Pesonen H, Gaiarsa S, Boinett CJ, et al. Pan-pathogen deep sequencing of nosocomial bacterial pathogens in Italy in spring 2020: a prospective cohort study. Lancet Microbe. 2024; 5(10):100890. doi: 10.1016/S2666-5247(24)00113-7. PMID: 39178869.
Supriadi IR, Haanappel CP, Saptawati L, Widodo NH, Sitohang G, Usman Y, et al. Infection prevention and control in Indonesian hospitals: identification of strengths, gaps, and challenges. Antimicrob Resist Infect Control. 2023; 12(1):6. doi: 10.1186/s13756-023-01211-5. PMID: 36732802; PMCID: PMC9894741.
Ezzariga N, Zouhari O, Rhars A, Lemkhente Z, Aghrouch M. Biofilm and Antibiotic Resistance Study of Bacteria Involved in Nosocomial Infections. Cureus. 2025; 17(2): e78673. doi: 10.7759/cureus.78673. PMID: 39926624; PMCID: PMC11804273.
Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, et al. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev. 2019; 32(4): e00031-19. doi: 10.1128/CMR.00031-19. PMID: 31462403; PMCID: PMC6730496.
López-Calleja AI, Morilla Morales E, Nuñez Medina R, Fernández Esgueva M, Sahagún Pareja J, García-Lechuz Moya JM, et al. Antimicrobial activity of ceftolozane-tazobactam against multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa clinical isolates from a Spanish hospital. Rev Esp Quimioter. 2019;32(1):68-72. PMID: 30547503; PMCID: PMC6372965.
Florense SUR, Magdalena SBY, Muntasir, Erna M. Microbial patterns and drug sensitivity test of bacterial and fungal infection in COVID-19 patients at the national referral hospital in North Sumatra, Indonesia. Afr J Infect Dis. 2024;19(1):36-44. doi: 10.21010/Ajidv19i1.5. PMID: 39618541; PMCID: PMC11607789.
Wise MG, Karlowsky JA, Mohamed N, Hermsen ED, Kamat S, Townsend A, et al. Global trends in carbapenem- and difficult-to-treat-resistance among World Health Organization priority bacterial pathogens: ATLAS surveillance program 2018-2022. J Glob Antimicrob Resist. 2024; 37:168-175. doi: 10.1016/j.jgar.2024.03.020. PMID: 38608936.
Diekema DJ, Hsueh PR, Mendes RE, Pfaller MA, Rolston KV, Sader HS, et al. The Microbiology of Bloodstream Infection: 20-Year Trends from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother. 2019; 63(7): e00355-19. doi: 10.1128/AAC.00355-19. PMID: 31010862; PMCID: PMC6591610.
Jouault A, Saliba AM, Touqui L. Modulation of the immune response by the Pseudomonas aeruginosa type-III secretion system. Front Cell Infect Microbiol. 2022; 12:1064010. doi: 10.3389/fcimb.2022.1064010. PMID: 36519135; PMCID: PMC9742435.
Botelho J, Grosso F, Peixe L. Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat. 2019; 44:100640. doi: 10.1016/j.drup.2019.07.002. PMID: 31492517.
Qaderi I, Chan I, Harvey H, Burrows LL. Structural conservation and functional role of TfpY-like proteins in type IV pilus assembly. J Bacteriol. 2025: e0034324. doi: 10.1128/jb.00343-24. PMID: 39817748.
Dangla-Pélissier G, Roux N, Schmidt V, Chambonnier G, Ba M, Sebban-Kreuzer C, de Bentzmann S, Giraud C, Bordi C. The horizontal transfer of Pseudomonas aeruginosa PA14 ICE PAPI-1 is controlled by a transcriptional triad between TprA, NdpA2 and MvaT. Nucleic Acids Res. 2021 Nov 8;49(19):10956-10974. doi: 10.1093/nar/gkab827. PMID: 34643711; PMCID: PMC8565334.
Verdial C, Serrano I, Tavares L, Gil S, Oliveira M. Mechanisms of Antibiotic and Biocide Resistance That Contribute to Pseudomonas aeruginosa Persistence in the Hospital Environment. Biomedicines. 2023;11(4):1221. doi: 10.3390/biomedicines11041221. PMID: 37189839; PMCID: PMC10135826.
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci. 2021; 22(6):3128. doi: 10.3390/ijms22063128. PMID: 33803907; PMCID: PMC8003266.
Martínez-Carranza E, García-Reyes S, González-Valdez A, Soberón-Chávez G. Tracking the genome of four Pseudomonas aeruginosa isolates that have a defective Las quorum-sensing system, but are still virulent. Access Microbiol. 2020; 2(7): acmi000132. doi: 10.1099/acmi.0.000132. PMID: 32974595; PMCID: PMC7497837.
Ho CS, Wong CTH, Aung TT, Lakshminarayanan R, Mehta JS, Rauz S, et al. Antimicrobial resistance: a concise update. Lancet Microbe. 2025; 6(1):100947. doi: 10.1016/j.lanmic.2024.07.010. PMID: 39305919.
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. doi: 10.1111/j.1469-0691.2011.03570.x. PMID: 21793988.
Cosentino F, Viale P, Giannella M. MDR/XDR/PDR or DTR? Which definition best fits the resistance profile of Pseudomonas aeruginosa? Curr Opin Infect Dis. 2023; 36(6):564-571. doi: 10.1097/QCO.0000000000000966. PMID: 37930070; PMCID: PMC10836784.
Oliver A, Rojo-Molinero E, Arca-Suarez J, Beşli Y, Bogaerts P, Cantón R, et al; ESGARS-ISARPAE members. Pseudomonas aeruginosa antimicrobial susceptibility profiles, resistance mechanisms and international clonal lineages: update from ESGARS-ESCMID/ISARPAE Group. Clin Microbiol Infect. 2024;30(4):469-480. doi: 10.1016/j.cmi.2023.12.026. PMID: 38160753.
Weiss SL, Peters MJ, Alhazzani W, Agus MSD, Flori HR, Inwald DP, et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 2020; 46(Suppl 1):10-67. doi: 10.1007/s00134-019-05878-6. PMID: 32030529; PMCID: PMC7095013.
Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context. 2018; 7:212527. doi: 10.7573/dic.212527. PMID: 29872449; PMCID: PMC5978525.
Vallecoccia MS, Dominedò C, Cutuli SL, Martin-Loeches I, Torres A, De Pascale G. Is ventilated hospital-acquired pneumonia a worse entity than ventilator-associated pneumonia? Eur Respir Rev. 2020; 29(157):200023. doi: 10.1183/16000617.0023-2020. PMID: 32759376; PMCID: PMC9488552.
Martin-Loeches I, Torres A, Nagavci B, Aliberti S, Antonelli M, Bassetti M, et al. ERS/ESICM/ESCMID/ALAT guidelines for the management of severe community-acquired pneumonia. Eur Respir J. 2023;61(4):2200735. doi: 10.1183/13993003.00735-2022. PMID: 37012080.
Murphy CN, Fowler R, Balada-Llasat JM, Carroll A, Stone H, Akerele O, et al. Multicenter Evaluation of the BioFire FilmArray Pneumonia/Pneumonia Plus Panel for Detection and Quantification of Agents of Lower Respiratory Tract Infection. J Clin Microbiol. 2020; 58(7): e00128-20. doi: 10.1128/JCM.00128-20. PMID: 32350043; PMCID: PMC7315029.
Pizzolato-Cezar LR, Okuda-Shinagawa NM, Machini MT. Combinatory Therapy Antimicrobial Peptide-Antibiotic to Minimize the Ongoing Rise of Resistance. Front Microbiol. 2019; 10:1703. doi: 10.3389/fmicb.2019.01703. PMID: 31447797; PMCID: PMC6695574.
Mwangi J, Hao X, Lai R, Zhang ZY. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res. 2019; 40(6):488-505. doi: 10.24272/j.issn.2095-8137.2019.062. PMID: 31592585; PMCID: PMC6822926.
Farzi N, Oloomi M, Bahramali G, Siadat SD, Bouzari S. Antibacterial Properties and Efficacy of LL-37 Fragment GF-17D3 and Scolopendin A2 Peptides Against Resistant Clinical Strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii In Vitro and In Vivo Model Studies. Probiotics Antimicrob Proteins. 2024;16(3):796-814. doi: 10.1007/s12602-023-10070-w. PMID: 37148452.
Elfadadny A, Ragab F, AlHarbi M, Badshah F, Ibáñez-Arancibia E, Farag A, et al. Antimicrobial resistance of Pseudomonas aeruginosa: navigating clinical impacts, current resistance trends, and innovations in breaking therapies. Frontiers in Microbiology. 2024; 15. doi: 10.3389/fmicb.2024.1374466
Daikos GL, da Cunha CA, Rossolini GM, Stone GG, Baillon-Plot N, Tawadrous M, et al. Review of Ceftazidime-Avibactam for the Treatment of Infections Caused by Pseudomonas aeruginosa. Antibiotics (Basel). 2021;10(9):1126. doi: 10.3390/antibiotics10091126. PMID: 34572708; PMCID: PMC8467554.
Das S, Riccobene T, Carrothers TJ, Wright JG, MacPherson M, Cristinacce A, et al. Dose selection for aztreonam-avibactam, including adjustments for renal impairment, for Phase IIa and Phase III evaluation. Eur J Clin Pharmacol. 2024; 80(4):529-543. doi: 10.1007/s00228-023-03609-x. PMID: 38252170; PMCID: PMC10937790.
Singh V, Agarwal J, Nath SS, Sharma A. Evaluation of direct antimicrobial susceptibility testing from positive flagged blood cultures in sepsis patients. Indian J Crit Care Med. 2024; 28(4):387-392. doi: 10.5005/jp-journals-10071-24687. PMID: 38585311; PMCID: PMC10998512.
Manterola C, Quiroz G, Salazar P, García N. Metodología de los tipos y diseños de estudio más frecuentemente utilizados en investigación clínica. Revista Médica Clínica Las Condes. 2019; 30(1): 36-49. https://doi.org/10.1016/j.rmclc.2018.11.005.
Otzen T, Manterola C. Técnicas de muestreo sobre una población a estudio. Int. J. Morphol. 2017; 35(1): 227-232. Disponible en: https://scielo.conicyt.cl/pdf/ijmorphol/v35n1/art37.pdf
Asamblea Nacional del Ecuador. Ley Orgánica de Protección de Datos Personales. 2021. Disponible en: https://www.telecomunicaciones.gob.ec/wp-content/uploads/2021/06/Ley-Organica-de-Datos-Personales.pdf
Ministerio de Salud Pública del Ecuador. Reglamento sustitutivo del reglamento para la aprobación y seguimiento de Comités de Ética de Investigación en Seres Humanos (CEISH) y Comités de Ética Asistenciales para la Salud (CEAS). Acuerdo Ministerial 00005-2022. Quinto Suplemento Nº 118 - Registro Oficial. Disponible en: https://ceish.itsup.edu.ec/acuerdo.php
World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191-4. doi: 10.1001/jama.2013.281053. PMID: 24141714.
National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 11th ed. Approved standard M7-A 4. National Committee for Clinical Laboratory Standards, Wayne, PA, USA. 2018. www.clsi.org
Ministerio de Salud Pública del Ecuador. Manual: Gestión interna de los residuos y desechos generados en los establecimientos de salud. Quito. 2019. Disponible en: https://aplicaciones.msp.gob.ec/salud/archivosdigitales/documentosDirecciones/dnn/archivos/AC00036-2019.pdf
Shacho E, Ambelu A, Goshu AT, Yilma D. Predicting the effect of nosocomial infection prevention on neonatal mortality and hospital stay in Ethiopia: a prospective longitudinal study. BMC Infect Dis. 2024; 24(1):1185. doi: 10.1186/s12879-024-10069-w. PMID: 39433993; PMCID: PMC11492785.
Benyamini P. Phylogenetic Tracing of Evolutionarily Conserved Zonula Occludens Toxin Reveals a "High Value" Vaccine Candidate Specific for Treating Multi-Strain Pseudomonas aeruginosa Infections. Toxins (Basel). 2024; 16(6):271. doi: 10.3390/toxins16060271. PMID: 38922165; PMCID: PMC11209546.
Meschiari M, Asquier-Khati A, Tiseo G, Luque-Paz D, Murri R, Boutoille D, et al; Italian Society of Infectious and Tropical Diseases (SIMIT), and the French Society of Infectious Diseases (SPILF). Treatment of infections caused by multidrug-resistant Gram-negative bacilli: A practical approach by the Italian (SIMIT) and French (SPILF) Societies of Infectious Diseases. Int J Antimicrob Agents. 2024; 64(1):107186. doi: 10.1016/j.ijantimicag.2024.107186. PMID: 38688353.
Barbecho Coraisaca DV. Susceptibilidad antimicrobiana en Pseudomona spp., en el Hospital General Docente Cuenca-Ecuador. Vive Rev. Salud. 2021; 4(12): 50-65. https://doi.org/10.33996/revistavive.v4i12.108.
Mesinas-Garrido M, Díaz-Romero A, Minutti PA, López-Vejar CE. Resistencia antimicrobiana y mortalidad en pacientes con infección por Pseudomonas aeruginosa. Med Int Méx 2024; 40 (4): 249-257. Disponible en: https://medicinainterna.org.mx/article/resistencia-antimicrobiana-y-mortalidad-en-pacientes-con-infeccion-por-pseudomonas-aeruginosa/
Shi N, Kang J, Wang S, Song Y, Yin D, Li X, et al. Bacteriological Profile and Antimicrobial Susceptibility Patterns of Gram-Negative Bloodstream Infection and Risk Factors Associated with Mortality and Drug Resistance: A Retrospective Study from Shanxi, China. Infect Drug Resist. 2022; 15:3561-3578. doi: 10.2147/IDR.S370326. PMID: 35833010; PMCID: PMC9271686.
Paz-Zarza VM, Mangwani-Mordani S, Martínez-Maldonado A, Álvarez-Hernández D, Solano-Gálvez SG, Vázquez-López R. Pseudomonas aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Rev Chil infectol. 2019; 36(2): 180-189. http://dx.doi.org/10.4067/S0716-10182019000200180.
Asmare Z, Reta MA, Gashaw Y, Getachew E, Sisay A, Gashaw M, et al. Antimicrobial resistance profile of Pseudomonas aeruginosa clinical isolates from healthcare-associated infections in Ethiopia: A systematic review and meta-analysis. PLoS One. 2024; 19(8): e0308946. doi: 10.1371/journal.pone.0308946. PMID: 39137234; PMCID: PMC11321567.
De La Cadena E, Pallares CJ, García-Betancur JC, Porras JA, Villegas MV. Actualización sobre la resistencia antimicrobiana en instituciones de salud de nivel III y IV en Colombia entre enero del 2018 y diciembre del 2021. Biomed. 2023; 43(4):457-73. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/7065
Pérez VL, Fernández FA, Díaz HD, González VR, Fernández TP. Gérmenes aislados en pacientes ingresados en la terapia intensiva del Hospital Clínico Quirúrgico Provincial ''Dr. Joaquín Albarrán''. Rev Cubana Invest Bioméd. 2020;39(3):1-11. Disponible en: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=101343
Gaur L, Chandola I, Negi N, Rawat P. Microbial profile and antibiotic resistance pattern of water supply in a tertiary care hospital of Uttarakhand. Iran J Microbiol. 2023; 15(2):225-235. doi: 10.18502/ijm.v15i2.12474. PMID: 37193230; PMCID: PMC10183072.
Rayson D, Basinda N, Pius RA, Seni J. Comparison of hand hygiene compliance self-assessment and microbiological hand contamination among healthcare workers in Mwanza region, Tanzania. Infect Prev Pract. 2021; 3(4):100181. doi: 10.1016/j.infpip.2021.100181. PMID: 34778743; PMCID: PMC8577144.
Cissé DM, Laure EEM, Blaise KA, Jean Paul NN, Gbonon MV, Mayaka CRA, et al. Evaluation of the implementation of hospital hygiene components in 30 health-care facilities in the autonomous district of Abidjan (Cote d'Ivoire) with the WHO Infection Prevention and Control Assessment Framework (IPCAF). BMC Health Serv Res. 2023; 23(1):870. doi: 10.1186/s12913-023-09853-2. PMID: 37587467; PMCID: PMC10433570.
DOI: https://doi.org/10.23857/pc.v10i5.9473
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/