Inteligencia Artificial Aplicada al Sector Turístico: Evolución y Tendencias de Investigación
Resumen
Con el acelerado avance de la ciencia y la tecnología, la Inteligencia Artificial (IA) ha sido ampliamente integrada en diversos sectores, incluido el turismo. El potencial transformador de la IA en este ámbito ha superado las expectativas, impulsando nuevas aplicaciones y soluciones inteligentes. Este estudio bibliométrico analiza el impacto emergente de la IA en el sector turístico, con el objetivo de mapear la evolución de la producción científica y las principales tendencias de investigación. Se realizó un análisis bibliométrico y de redes basado en registros de la base de datos Scopus, utilizando herramientas como RStudio, Bibliometrix y Biblioshiny. Los resultados revelan que entre 2020 y 2024 la producción científica creció un 257%, destacando a China, India y Estados Unidos como los países líderes en publicaciones sobre IA aplicada al turismo. Aunque se trata de una temática reciente, los estudios han prosperado significativamente en los últimos años, evidenciando una mayor dedicación de investigadores y centros académicos para explorar la influencia de la IA en este sector. Las aplicaciones emergentes de IA en el turismo se centran en la optimización operativa, la toma de decisiones informadas, la mejora de la experiencia del cliente y el uso de tecnologías robóticas en entornos turísticos. Este estudio no solo aporta al conocimiento actual sobre la IA en el turismo, sino que también sugiere líneas de investigación futuras para continuar explorando su impacto en el desarrollo de un turismo más inteligente y eficiente.
Palabras clave
Referencias
Afsahhosseini, F., & Al-Mulla, Y. (2020). Machine Learning in Tourism. En ACM International Conference Proceeding Series (pp. 53-57). Association for Computing Machinery. https://doi.org/10.1145/3426826.3426837
Akehurst, G. (2008). User generated content: The use of blogs for tourism organisations and tourism consumers. Service Business, 3, (51-61). https://doi.org/10.1007/s11628-008-0054-2
Akhtar, M., & Moridpour, S. (2021). A Review of Traffic Congestion Prediction Using Artificial Intelligence. Journal of Advanced Transportation, (1), 8878011. https://doi.org/10.1155/2021/8878011
Anacleto, R., Figueiredo, L., Luz, N., Almeida, A., & Novais, P. (2011). Recommendation and planning through mobile devices in tourism context. En N. P, 4710-057 Universidade do Minho Departamento de Informatica, Braga, P. D, B.-3001 Katholieke Universiteit Leuven Department of Computer Science, Heverlee, C. J.M, & 37008 Universidad de Salamanca Facultad de Ciencias, Salamanca (Eds.), Advances in Intelligent and Soft Computing (Vol. 92, pp. 133-140). https://doi.org/10.1007/978-3-642-19937-0_17
Bador, E., Abdel-Magid, I., Ahmad, S., & Akhter, M. (2020). Bibliometric analysis of wastewater literature published in Web of Science 2019 to 2020. Library Philosophy and Practice, 2020, 1-21. https://acortar.link/yqQbgd
Binesh, F., & Baloglu, S. (2023). Are we ready for hotel robots after the pandemic? A profile analysis. Computers in Human Behavior, 147, 107854. https://www.sciencedirect.com/science/article/pii/S0747563223002054
Borràs, J., Moreno, A., & Valls, A. (2014). Intelligent tourism recommender systems: A survey. Expert Systems with Applications, 41(16), 7370-7389. https://doi.org/10.1016/j.eswa.2014.06.007
Boukerche, A., & Wang, J. (2020). Machine Learning-based traffic prediction models for Intelligent Transportation Systems. Computer Networks, 181, 107530. https://doi.org/10.1016/j.comnet.2020.107530
Buhalis, D., Harwood, T., Bogicevic, V., Viglia, G., Beldona, S., & Hofacker, C. (2019). Technological disruptions in services: Lessons from tourism and hospitality. Journal of Service Management, 30(4), 484-506). https://doi.org/10.1108/JOSM-12-2018-0398
Busila, A., & Cristache, N. (2021). Managing artificial intelligence as a driver for future tourism. Proceedings of the 15th International Management Conference: Managing People and Organizations in a Global Crisis, November 4–5, 2021, Bucharest, Romania, 15(1), 902-915. https://conferinta.management.ase.ro/archives/2021/pdf%20IMC%202021/5%20PDF%20S5%20IMC%202021/5_8.pdf
Büyükkıdık, S. (2022). A Bibliometric Analysis: A Tutorial for the Bibliometrix Package in R Using IRT Literature. Journal of Measurement and Evaluation in Education and Psychology, 13(3), 164-193. https://doi.org/10.21031/epod.1069307
Cho, V. (2003). A comparison of three different approaches to tourist arrival forecasting. Tourism Management, 24(3), 323-330. https://doi.org/10.1016/S0261-5177(02)00068-7
de Kervenoael, R., Hasan, R., Schwob, A., & Goh, E. (2020). Leveraging human-robot interaction in hospitality services: Incorporating the role of perceived value, empathy, and information sharing into visitors’ intentions to use social robots. Tourism Management, 78. https://doi.org/10.1016/j.tourman.2019.104042
Duque, P., & Duque, E. (2022). Tendencias emergentes en la literatura sobre el compromiso del cliente: un análisis bibliométrico. Estudios Gerenciales, 38(162), 120-132. https://doi.org/10.18046/j.estger.2022.162.4528
Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., Carter, L., Wright, R. (2023). “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. En International Journal of Information Management (Vol. 71). Elsevier Ltd. https://doi.org/10.1016/j.ijinfomgt.2023.102642
Herawan, T., Sunyoto, S., Widodo, W., Disma, F., Budidharmanto, L., Damiasih, D., & Sari, E. (2023). The Emergence of Robotics in Tourism and Hospitality: A Bibliometric Analysis from 2017 to 2023. En G. O, M. B, S. F, R. A.M.A.C, G. C, K. Y, & T. C.M (Eds.), Lecture notes in computer science (Vol. 14111, pp. 470-488). Springer. https://doi.org/10.1007/978-3-031-37126-4_31
Herrera-Franco, G., Montalván-Burbano, N., Carrión-Mero, P., Apolo-Masache, B., & Jaya-Montalvo, M. (2020). Research Trends in Geotourism: A Bibliometric Analysis Using the Scopus Database. Geosciences, 10(10), 379. https://doi.org/10.3390/geosciences10100379
Joshi, M. (2014). Bibliometric indicators for evaluating the quality of scientifc publications. The Journal of Contemporary Dental Practice, 15(2), 258-262. https://doi.org/10.5005/jp-journals-10024-1525
Jupe, L., & Keatley, D. (2020). Airport artificial intelligence can detect deception: Or am i lying? Security Journal, 33(4), 622-635. https://doi.org/10.1057/s41284-019-00204-7
Karami, A., Arif, Y., Sandi, A., & Nurhayati, H. (2023). Non-Playable Character Movement Controls For Tour Guides And Tourist Activity Simulation Using Artificial Bee Colonies. En Proceedings—IEIT 2023: 2023 International Conference on Electrical and Information Technology (pp. 331-335). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/IEIT59852.2023.10335526
Kärle, E., Şimşek, U., Panasiuk, O., & Fensel, D. (2018). Building an ecosystem for the tyrolean tourism knowledge graph. En P. C, S. K, R. J.M.M, & S.-F. F (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)(Vol. 11153 LNCS, pp. 260-267). Springer Verlag. https://doi.org/10.1007/978-3-030-03056-8_25
Kazak, A., Chetyrbok, P., & Oleinikov, N. (2020). Artificial intelligence in the tourism sphere. IOP Conference Series: Earth and Environmental Science, 421(4), 042020. https://doi.org/10.1088/1755-1315/421/4/042020
Knani, M., Echchakoui, S., & Ladhari, R. (2022). Artificial intelligence in tourism and hospitality: Bibliometric analysis and research agenda. International Journal of Hospitality Management, 107, 103317. https://doi.org/10.1016/j.ijhm.2022.103317
Lee, M., Kwon, W., & Back, K.-J. (2021). Artificial intelligence for hospitality big data analytics: Developing a prediction model of restaurant review helpfulness for customer decision-making. International Journal of Contemporary Hospitality Management, 33(6), 2117-2136. https://doi.org/10.1108/IJCHM-06-2020-0587
Li, C., & Zhang, H. (2020). The Application of Computer Aided Translation in Practice—Taking the Chinese-English Translation of Tourism Texts in Hetao Region as an Example. En Journal of Physics: Conference Series (Vol. 1693, Número 1). IOP Publishing Ltd. https://doi.org/10.1088/1742-6596/1693/1/012005
Liu, C. (2022). Construction of Models for Evaluation and Development of Urban Tourism Resources Based on Artificial Intelligence. En Lecture Notes on Data Engineering and Communications Technologies (Vol. 123, pp. 871-878). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-96908-0_108
Liu, Y., Wang, R., & Zhao, T. (2022). Interaction Design in Residence Mode of Health and Tourism. En S. N.A & K. S (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 13325 LNCS, pp. 72-89). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-05463-1_6
Logatti, B., & Nazareth, C. (2022). City Information Modeling (CIM) and Smart Cities (SC): A Bibliometric Analysis with VOSViewer and R Software with Bibliometrix Package (2010-2020). Revista Nacional de Gerenciamento de Cidades, 10(81). https://doi.org/10.17271/23188472108120223349
Majeed, T., Stämpfli, A., Liebrich, A., & Meier, R. (2018). Personalized hybrid recommendations for daily activities in a tourist destination. En N. P, D. D, J. J.J, F.-C. A, N. E, G. P, C. D, V. G. G, P. A, & C. A.T (Eds.), Advances in Intelligent Systems and Computing (Vol. 806, pp. 155-165). Springer Verlag. https://doi.org/10.1007/978-3-030-01746-0_18
Malik, A., Budhwar, P., & Kazmi, B. A. (2023). Artificial intelligence (AI)-assisted HRM: Towards an extended strategic framework. Human Resource Management Review, 33(1), 100940. https://doi.org/10.1016/j.hrmr.2022.100940
Malik, S., Muhammad, K., & Waheed, Y. (2024). Artificial intelligence and industrial applications-A revolution in modern industries. Ain Shams Engineering Journal, 15(9), 102886. https://doi.org/10.1016/j.asej.2024.102886
Myronidis, D., & Nikolaos, T. (2021). Changes in climatic patterns and tourism and their concomitant effect on drinking water transfers into the region of South Aegean, Greece. En Stochastic Environmental Research and Risk Assessment (Vol. 35, Número 9, pp. 1725-1739). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00477-021-02015-y
Navigli, R., & Velardi, P. (2005). Structural semantic interconnections: A knowledge-based approach to word sense disambiguation. En IEEE Transactions on Pattern Analysis and Machine Intelligence (Vol. 27, Número 7, pp. 1075-1086). https://doi.org/10.1109/TPAMI.2005.149
Olufunke, O., & Okuoyo, O. (2023). A Bibliometric Analysis and Science Mapping of Recommendation Systems Research from 1987 to 2022. 2023 International Conference on Science, Engineering and Business for Sustainable Development Goals (SEB-SDG), (Vol. 1, pp. 1-11. https://doi.org/10.1109/SEB-SDG57117.2023.10124525
Papa, R., & La Rocca, R. A. (2017). New forms of mobility for an alternative territorial fruition: The rediscovery of tourist footpaths. En W. F & D. G (Eds.), Transport Infrastructure and Systems—Proceedings of the AIIT International Congress on Transport Infrastructure and Systems, TIS 2017 (pp. 669-676). CRC Press/Balkema. https://doi.org/10.1201/9781315281896-87
Rathore, B., Sengupta, P., Biswas, B., & Kumar, A. (2024). Predicting the price of taxicabs using Artificial Intelligence: A hybrid approach based on clustering and ordinal regression models. Transportation Research Part E: Logistics and Transportation Review, 185, 103530. https://doi.org/10.1016/j.tre.2024.103530
Refanidis, I., Emmanouilidis, C., Sakellariou, I., Alexiadis, A., Koutsiamanis, R.-A., Agnantis, K., Tasidou, A., Kokkoras, F., & Efraimidis, P. S. (2014). myVisitPlannerGR: Personalized itinerary planning system for tourism. En Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 8445 LNCS (pp. 615-629). Springer Verlag. https://doi.org/10.1007/978-3-319-07064-3_53
Sánchez, E. C., Sánchez-Medina, A. J., & Pellejero, M. (2020). Identifying critical hotel cancellations using artificial intelligence. Tourism Management Perspectives, 35, 100718. https://doi.org/10.1016/j.tmp.2020.100718
Singh, V. K., Singh, P., Karmakar, M., Leta, J., & Mayr, P. (2021). The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics, 126(6), 5113-5142. https://doi.org/10.1007/s11192-021-03948-5
Strotmann, A., Zhao, D., & Bubela, T. (2009). Author name disambiguation for collaboration network analysis and visualization. Proceedings of the American Society for Information Science and Technology, 46(1), 1-20. https://doi.org/10.1002/meet.2009.1450460218
Technology, T. (s. f.). Innovative Teaching: A Bibliometric Analysis From 2013 to 2023. Recuperado 16 de octubre de 2024, de https://www.eu-jer.com/innovative-teaching-a-bibliometric-analysis-from-2013-to-2023
Traversa, F. (2024). Artificial Intelligence in Tourism. En Reference Module in Social Sciences. Elsevier. https://doi.org/10.1016/B978-0-443-13701-3.00344-3
Tsihrintzis, G. A., Virvou, M., Bourbakis, N. G., & Jain, L. C. (2024). Introduction to Advances in Information, Intelligence, Systems and Applications. En B. N, T. G.A, V. M, & J. L.C (Eds.), Lecture Notes in Networks and Systems: Vol. 1093 LNNS (pp. 1-9). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-67426-6_1
Tuomi, A., Tussyadiah, I., Ling, E. C., Miller, G., & Lee, G. (2020). x=(tourism_work) y=(sdg8) while y=true: Automate(x). En Annals of Tourism Research (Vol. 84). Elsevier Ltd. https://doi.org/10.1016/j.annals.2020.102978
Tussyadiah, I. (2020). A review of research into automation in tourism: Launching the Annals of Tourism Research Curated Collection on Artificial Intelligence and Robotics in Tourism. En Annals of Tourism Research (Vol. 81). Elsevier Ltd. https://doi.org/10.1016/j.annals.2020.102883
Wang, S., Du, J., Zhou, Y., Sun, Z., & Jia, Y. (2010). Study on data based tourism management decision support system. En 2010 International Conference on Networking, Sensing and Control, ICNSC 2010 (pp. 217-222). https://doi.org/10.1109/ICNSC.2010.5461501
Woo, S.-H., Kang, D.-J., & Martin, S. (2013). Seaport Research: An Analysis of Research Collaboration using Social Network Analysis. Transport Reviews, 33(4), 460-475. https://doi.org/10.1080/01441647.2013.786766
Wu, W., Xie, Y., Liu, X., Gu, Y., Zhang, Y., Tu, X., & Tan, X. (2019). Analysis of Scientific Collaboration Networks among Authors, Institutions, and Countries Studying Adolescent Myopia Prevention and Control: A Review Article. Iranian Journal of Public Health, 48(4), 621.
Yan, X., Liu, X., & Zhao, X. (2020). Using machine learning for direct demand modeling of ridesourcing services in Chicago. Journal of Transport Geography, 83, 102661. https://doi.org/10.1016/j.jtrangeo.2020.102661
Yang, L., Zhang, R., Sun, H., Guo, X., & Huai, J. (2012). A tourist itinerary planning approach based on ant colony algorithm. En Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 7418 LNCS (pp. 399-404). https://doi.org/10.1007/978-3-642-32281-5_39
Ye, Q., Zhang, Z., & Law, R. (2009). Sentiment classification of online reviews to travel destinations by supervised machine learning approaches. En Expert Systems with Applications (Vol. 36, Número 3 PART 2, pp. 6527-6535). Elsevier Ltd. https://doi.org/10.1016/j.eswa.2008.07.035
Yeung, C., Tung, P.-F., & Yen, J. (1998). Multi-agent based Tourism Kiosk on Internet. En Proceedings of the Hawaii International Conference on System Sciences (Vol. 4, pp. 452-461). Institute of Electrical and Electronics Engineers Computer Society. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031599742&partnerID=40&md5=3b956c0066fe07f5948afb6326a73908
Yin, H., Yang, X., Peng, L., Xia, C., Zhang, D., Cui, F., Huang, H., & Li, Z. (2022). Trends of calcium silicate biomaterials in medical research and applications: A bibliometric analysis from 1990 to 2020. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.991377
Zardari, S., Alam, S., Al Salem, H. A., Al Reshan, M. S., Shaikh, A., Malik, A. F. K., Masood ur Rehman, M., & Mouratidis, H. (2022). A Comprehensive Bibliometric Assessment on Software Testing (2016–2021). Electronics, 11(13), Article 13. https://doi.org/10.3390/electronics11131984
Zeng, Z., Chen, P.-J., & Lew, A. A. (2020). From high-touch to high-tech: COVID-19 drives robotics adoption. En Tourism Geographies (Vol. 22, Número 3, pp. 724-734). Routledge. https://doi.org/10.1080/14616688.2020.1762118
Zhao, L., & Huang, M. (2022). Application of computer virtual simulation technology in tourism industry. En 2022 3rd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering, ICBAIE 2022 (pp. 371-376). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICBAIE56435.2022.9985798
Zhu, J., & Liu, W. (2020). A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics, 123(1), 321-335. https://doi.org/10.1007/s11192-020-03387-8
DOI: https://doi.org/10.23857/pc.v9i11.8345
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/