Optimización de Procesos de Mecanizado mediante Algoritmos Avanzados en Sistemas CAM: revisión sistemática
Resumen
La optimización de los procesos de mecanizado es crucial para mejorar la eficiencia y calidad en la industria manufacturera. Los sistemas CAM han evolucionado con la integración de algoritmos avanzados, optimizando parámetros críticos y mejorando las operaciones de mecanizado. Este artículo presenta una revisión sistemática de la aplicación de estos algoritmos en sistemas CAM, destacando metodologías, resultados y tendencias actuales. Se identificaron diversos algoritmos efectivos, como genéticos, optimización basada en enjambre de partículas, inteligencia artificial y algoritmos evolutivos, que mejoran el tiempo de mecanizado y la calidad superficial, aumentando la eficiencia y precisión en la producción. La integración de técnicas de inteligencia artificial permite evaluación y optimización en tiempo real, mejorando la consistencia y reduciendo la intervención humana. Sin embargo, se necesitan más pruebas empíricas en entornos industriales para validar modelos teóricos y asegurar la aplicabilidad práctica. Las recomendaciones incluyen validar empíricamente modelos teóricos en condiciones industriales, desarrollar metodologías para implementar algoritmos avanzados en sistemas CAM y explorar nuevas tecnologías emergentes como la inteligencia artificial y el aprendizaje automático. La adopción de estas tecnologías es esencial para mantener la competitividad y mejorar la calidad y eficiencia en la industria manufacturera.
Palabras clave
Referencias
Ma, H., Liu, W., & Zhou, X. (2020). An effective and automatic approach for parameters optimization of complex end milling process based on virtual machining. Journal of Intelligent Manufacturing, 31, 967–984. https://doi.org/10.1007/s10845-019-01489-6
Ižol, P., Brindza, J., Vrabeľ, M., Demko, M., & Basilio, S. (2022). Effect of optimization software on part shape accuracy and production times during rough milling of aluminum alloy. Machines, 10(1212). https://doi.org/10.3390/machines1012121
Čuboňová, N., Dodok, T., Kuric, I., & Císar, M. (2018). Implementation of innovative methods for the creation of strategy algorithms in CAD/CAM system Edgecam. Advances in Science and Technology Research Journal, 12, 10-18. https://doi.org/10.12913/22998624/92100
Križan, P., Hanko, L., Matúš, M., Kijovský, J., & Beniak, J. (2023). Implementation of topology optimization into a CAM simulation of robotic machining. In 2023 IEEE International Conference on Electronics, Circuits and Systems (ICECS) (pp. 131-138). https://doi.org/10.1109/CSCC58962.2023.00028
Ruban, V., Derbaba, V., Bohdanov, O., & Shcherbyna, Y. (2023). Optimization of product processing modes in modeling and programming of machining on machine tools with program control. Collection of Research Papers of the National Mining University, 72, 222-238. https://doi.org/10.33271/crpnmu/72.222
Čuboňová, N., Dodok, T., & Sagova, Z. (2019). Optimisation of the machining process using genetic algorithm. Scientific Journal of Silesian University of Technology. Series Transport, 104, 15-25. https://doi.org/10.20858/sjsutst.2019.104.2
Dodok, T., Čuboňová, N., & Wiecek, D. (2018). Optimization of machining processes preparation with usage of Strategy Manager. MATEC Web of Conferences, 244, 02004. https://doi.org/10.1051/matecconf/201824402004
Karlina, Y. I., Kargapoltsev, S. K., Gozbenko, V. E., Leonovich, D. S., & Karlina, A. I. (2021). Automation of preproduction processes for high-precision small-sized parts on CNC machines. IOP Conference Series: Materials Science and Engineering, 1064(1), 012017. https://doi.org/10.1088/1757-899X/1064/1/012017
Dodok, T., & Čuboňová, N. (2019). Optimization and efficiency of toolpath generation in CAD/CAM system. MATEC Web of Conferences, 299, 03001. https://doi.org/10.1051/matecconf/201929903001
Nishida, I., Hirai, T., Sato, R., & Shirase, K. (2018). Automatic process planning system for end-milling operation considering CAM operator's intention. Transactions of the JSME, 84. https://doi.org/10.1299/transjsme.17-00563
Denkena, B., Dittrich, M.-A., Nguyen, H. N., & Bild, K. (2021). Self-optimizing process planning of multi-step polishing processes. Production Engineering, 15(3), 563-571. https://doi.org/10.1007/s11740-021-01042-6
Mulyadi, M., Alfiansyah, W., Akbar, A., Firdaus, R., & Andita, N. F. G. (2019). Optimizing machining time for CAD/CAM milling programming using the Taguchi method. Journal of Physics: Conference Series, 1402(4), 044043. https://doi.org/10.1088/1742-6596/1402/4/044043
Tonejca Née Plessing, L., Mauthner, G., Trautner, T., König, V., & Liemberger, W. (2022). AI-based surface roughness prediction model for automated CAM-planning optimization. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 1-4). https://doi.org/10.1109/ETFA52439.2022.9921281
Hammoudi, A., Yildiz, A. R., & Mirjalili, S. (2020). Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism. Knowledge-Based Systems, 191, 105237. https://doi.org/10.1016/j.knosys.2019.105237
Jachym, M., Lavernhe, S., Euzenat, C., & Quiniou, S. (2019). Effective NC machining simulation with OptiX ray tracing engine. The Visual Computer, 35, 281–288. https://doi.org/10.1007/s00371-018-1497-7
Gao, S. (2023). Simulation of mechanical NC machining based on CAD/CAM. Computer-Aided Design and Applications. Retrieved from https://api.semanticscholar.org/CorpusID:261380236
Mohamad, M. H., & Zahid, M. N. O. (2018). Investigation of roughing machining simulation by using visual basic programming in NX CAM system. IOP Conference Series: Materials Science and Engineering, 319(1), 012010. https://doi.org/10.1088/1757-899X/319/1/012010
Jiang, X., Lu, W., & Zhang, Z. (2018). An approach for improving the machining efficiency and quality of aerospace curved thin-walled parts during five-axis NC machining. International Journal of Advanced Manufacturing Technology, 97, 2477–2488. https://doi.org/10.1007/s00170-018-2129-0
Hamza, F., Abderazek, H., Lakhdar, S., & Mellal, M. A. (2018). Optimum design of cam-roller follower mechanism using a new evolutionary algorithm. International Journal of Advanced Manufacturing Technology, 99, 1267–1282. https://doi.org/10.1007/s00170-018-2543-3
Tera, M., Breaz, R. E., Racz, S. G., & Şuşcă, S. (2019). Processing strategies for single point incremental forming—a CAM approach. International Journal of Advanced Manufacturing Technology, 102, 1761–1777. https://doi.org/10.1007/s00170-018-03275-9
Pandey, A., Saroj, A., & Srivastava, A. (2023). Process parameter optimization of abrasive jet, ultrasonic, laser beam, electrochemical, and plasma arc machining processes using optimization techniques: A review. SAE International Journal of Materials and Manufacturing, 16(3), 245-279. https://doi.org/10.4271/05-16-03-0018
Qiang, Z., Miao, X., & Wu, M. (2018). Optimization of abrasive waterjet machining using multi-objective cuckoo search algorithm. International Journal of Advanced Manufacturing Technology, 99, 1257–1266. https://doi.org/10.1007/s00170-018-2549-x
Bakhtiyari, A. N., Wang, Z., Wang, L., & Zheng, H. (2021). A review on applications of artificial intelligence in modeling and optimization of laser beam machining. Optics & Laser Technology, 135, 106721. https://doi.org/10.1016/j.optlastec.2020.106721
Moshi, A., Arul, S., & Bharathi, S., & Manikandan, K. R. (2022). Effective utilization of optimization algorithms on machining operations. Indian Journal of Engineering and Materials Sciences, 29, 155-168.
Chávez-García, H., & Castillo-Villar, K. K. (2018). Simulation-based model for the optimization of machining parameters in a metal-cutting operation. Simulation Modelling Practice and Theory, 84, 204-221. https://doi.org/10.1016/j.simpat.2018.02.008
Ozturk, S., Aydin, L., & Celik, E. (2018). A comprehensive study on slicing processes optimization of silicon ingot for photovoltaic applications. Solar Energy, 161, 109-124. https://doi.org/10.1016/j.solener.2017.12.040
Zhang, X., Xu, S., & Zhang, S. (2020). Research on chasing algorithm based on motion control of cutting machine. 2020 39th Chinese Control Conference (CCC) (pp. 2631-2635). https://doi.org/10.23919/CCC50068.2020.9189196
Xiao, Q., Li, C., Tang, Y., Li, L., & Li, L. (2019). A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning. Energy, 166, 142-156. https://doi.org/10.1016/j.energy.2018.09.191
Shastri, A. S., Nargundkar, A., Kulkarni, A. J., & Gupta, A. (2020). Multi-cohort intelligence algorithm for solving advanced manufacturing process problems. Neural Computing and Applications, 32, 15055–15075. https://doi.org/10.1007/s00521-020-04858-y
Surleraux, A., Lepert, R., Pernot, J., Kerfriden, P., & Bigot, S. (2020). Machine learning-based reverse modeling approach for rapid tool shape optimization in die-sinking micro electro discharge machining. Journal of Computing and Information Science in Engineering, 20(3), 031002. https://doi.org/10.1115/1.4045956
Natarajan, E., Kaviarasan, V., Lim, W. H., Tiang, S., & Tan, T. (2018). Enhanced multi-objective teaching-learning-based optimization for machining of Delrin. IEEE Access, 6, 51528-51546. https://doi.org/10.1109/ACCESS.2018.2869040
DOI: https://doi.org/10.23857/pc.v9i8.7827
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/