Comportamiento Termotrópico de los lípidos, revisión bibliográfica
Resumen
Los estudios biofísicos sobre el comportamiento termotrópico de los lípidos ha permitido conocer el mecanismo molecular de los lípidos que conforman la bicapa lipídica de las células procariotas y eucariotas al someterlas a ciertas temperaturas. Sin embargo, estos organismos presentan un alto grado de complejidad por ello los datos obtenidos son el resultado de estudios a base de membranas modelo o sintéticas como micelas y liposomas que fueron extrapolados a membranas naturales. Las transiciones de fase están estrechamente ligadas al tipo de lípido porque la temperatura de transición es propia de cada lípido, grado de saturación y largo de cadena de las colas de ácidos grasos, también depende de la concentración de componentes secundarios como esteroles que afectan la temperatura de transición, aboliendo la fase de pretransición y a concentraciones mayores la transición principal. Finalmente, el comportamiento termotrópico en el ámbito farmacéutico ha contribuido en el control de calidad de biofármacos evitando que estos presenten inestabilidad.
Palabras clave
Referencias
Balleza, D., Mescola, A., & Alessandrini, A. (2020). Model lipid systems and their use to evaluate the phase state of biomembranes, their mechanical properties and the effect of non-conventional antibiotics: the case of daptomycin. European Biophysics Journal 2020 49:5, 49(5), 401-408. https://doi.org/10.1007/S00249-020-01445-W
Chen, C., Han, D., Cai, C., & Tang, X. (2010). An overview of liposome lyophilization and its future potential. Journal of Controlled Release, 142(3), 299-311. https://doi.org/10.1016/J.JCONREL.2009.10.024
Coronel, J., Marqués, A., Manresa, Á., Aranda, F., Teruel, J., & Ortiz, A. (2017). Interaction of the Lipopeptide Biosurfactant Lichenysin with Phosphatidylcholine Model Membranes. Langmuir, 33(38), 9997-10005. https://doi.org/10.1021/ACS.LANGMUIR.7B01827
Davis, U. (2021). Membrane Phase Transitions. En Biophysics-biology of membranes. Physics Libretext. https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Biophysics_241_-_Membrane_Biology/03%3A_Membrane_Phases_and_Morphologies/3.01%3A_Membrane_Phase_Transitions
Demetzos, C. (2008). Differential Scanning Calorimetry (DSC): A Tool to Study the Thermal Behavior of Lipid Bilayers and Liposomal Stability. Journal of Liposome Research, 18(3), 159-173. https://doi.org/10.1080/08982100802310261
Dominguez Pardo, J. J., Dörr, J. M., Renne, M. F., Ould-Braham, T., Koorengevel, M. C., van Steenbergen, M. J., & Killian, J. A. (2017). Thermotropic properties of phosphatidylcholine nanodiscs bounded by styrene-maleic acid copolymers. Chemistry and Physics of Lipids, 208, 58-64. https://doi.org/10.1016/J.CHEMPHYSLIP.2017.08.010
Efimova, S., & Ostroumova, O. (2020). The Thermotropic Behavior of Saturated Phosphocholines in the Presence of Steroid Saponins. Biophysical Journal, 118(3), 90a. https://doi.org/10.1016/J.BPJ.2019.11.656
Genova, J., Chamati, H., Slavkova, Z., & Petrov, M. (2019). Differential Scanning Calorimetric Study of the Effect of Cholesterol on the Thermotropic Phase Behavior of the Phospholipid 1-Stearoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine. Journal of Surfactants and Detergents, 22(5), 1229-1235. https://doi.org/10.1002/JSDE.12289
Heberle, F. A., & Pabst, G. (2017). Complex biomembrane mimetics on the sub-nanometer scale. Biophysical Reviews , 9(4), 353-373. https://doi.org/10.1007/S12551-017-0275-5
Jovanović, A. A., Balanč, B. D., Ota, A., Ahlin Grabnar, P., Djordjević, V. B., Šavikin, K. P., Bugarski, B. M., Nedović, V. A., & Poklar Ulrih, N. (2018). Comparative Effects of Cholesterol and β-Sitosterol on the Liposome Membrane Characteristics. European Journal of Lipid Science and Technology, 120(9), 1800039. https://doi.org/10.1002/EJLT.201800039
Khakbaz, P., & Klauda, J. B. (2018). Investigation of phase transitions of saturated phosphocholine lipid bilayers via molecular dynamics simulations. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1860(8), 1489-1501. https://doi.org/10.1016/J.BBAMEM.2018.04.014
Kováčik, A., Šilarová, M., Pullmannová, P., Maixner, J., & Vávrová, K. (2017). Effects of 6-Hydroxyceramides on the Thermotropic Phase Behavior and Permeability of Model Skin Lipid Membranes. Langmuir, 33(11), 2890-2899. https://doi.org/10.1021/ACS.LANGMUIR.7B00184/SUPPL_FILE/LA7B00184_SI_001.PDF
Leonis, G., Semidalas, E. C., Chatzigeorgiou, P., Pollatos, E., Semidalas, C. E., Rappolt, M., Viras, K., & Mavromoustakos, T. (2019). Vinblastine: cholesterol interactions in lipid bilayers. En Advances in Biomembranes and Lipid Self-Assembly (Vol. 29, pp. 127-157). Academic Press. https://doi.org/10.1016/BS.ABL.2019.01.008
Matsuki, H., Endo, S., Sueyoshi, R., Goto, M., Tamai, N., & Kaneshina, S. (2017). Thermotropic and barotropic phase transitions on diacylphosphatidylethanolamine bilayer membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1859(7), 1222-1232. https://doi.org/10.1016/J.BBAMEM.2017.03.020
Moraga, N. (2020). Formación y transiciones de fase de bicapas lipídicas depositadas desde su fase de vapor sobre sustratos de silicio poroso [Pontificia Universidad Católica de Chile]. https://repositorio.uc.cl/xmlui/bitstream/handle/11534/29288/Formacion de bicapas lipidicas sobre sustratos silicio poroso.pdf
Navarro Tovar, G., Maldonado, L. A., & Gonzáles Castillo, M. del C. (2018). Liposomas: nanoburbujas de lípidos con aplicaciones en biomedicina MARÍA DEL CARMEN GONZÁLEZ CASTILLO. Universitarios Potosinos, 229(1), 4-10. http://www.uaslp.mx/Comunicacion-Social/Documents/Divulgacion/Revista/Quince/229/229-1.pdf
Oh, Y., Kim, J., Yethiraj, A., & Sung, B. J. (2016). Swing motion as a diffusion mechanism of lipid bilayers in a gel phase. Physical Review , 93(1), 1-8. https://doi.org/10.1103/PHYSREVE.93.012409/FIGURES/12/MEDIUM
Oseliero Filho, P. L., Gerbelli, B. B., Fornasier, F., Chaves Filho, A. B., Yoshinaga, M. Y., Miyamoto, S., Mortara, L., Lacerda, C. D., Cuccovia, I. M., Pimentel, A. S., & Oliveira, C. L. P. (2020). Structure and Thermotropic Behavior of Bovine- And Porcine-Derived Exogenous Lung Surfactants. Langmuir, 36(48), 14514-14529. https://doi.org/10.1021/ACS.LANGMUIR.0C02224/SUPPL_FILE/LA0C02224_SI_001.PDF
Pennington, E. R., Day, C., Parker, J. M., Barker, M., & Kennedy, A. (2016). Thermodynamics of interaction between carbohydrates and unilamellar dipalmitoyl phosphatidylcholine membranes. Journal of Thermal Analysis and Calorimetry 2016 123:3, 123(3), 2611-2617. https://doi.org/10.1007/S10973-016-5288-Y
Pruchnik, H., Bonarska-Kujawa, D., Żyłka, R., Oszmiański, J., & Kleszczyńska, H. (2018). Application of the DSC and spectroscopy methods in the analysis of the protective effect of extracts from the blueberry fruit of the genus Vaccinium in relation to the lipid membrane. Journal of Thermal Analysis and Calorimetry, 134(1), 679-689. https://doi.org/10.1007/S10973-018-7493-3/FIGURES/3
Pruchnik, H., Kral, T., & Hof, M. (2018). Lipid and DNA interaction with the triorganotin dimethylaminophenylazobenzoates studied by DSC and spectroscopy methods. Journal of Thermal Analysis and Calorimetry, 134(1), 691-700. https://doi.org/10.1007/S10973-018-7665-1/FIGURES/6
Rappolt, M. (2019). 50 Years of structural lipid bilayer modelling. En Advances in Biomembranes and Lipid Self-Assembly (Vol. 29, pp. 1-21). Academic Press. https://doi.org/10.1016/BS.ABL.2019.02.001
Reddy, T., Shrivastava, S., & Chattopadhyay, A. (2018). Local anesthetics induce interdigitation and thermotropic changes in dipalmitoylphosphatidylcholine bilayers. Chemistry and Physics of Lipids, 210, 22-27. https://doi.org/10.1016/J.CHEMPHYSLIP.2017.12.003
Saitta, F., Motta, P., Barbiroli, A., Signorelli, M., La Rosa, C., Janaszewska, A., Klajnert-Maculewicz, B., & Fessas, D. (2020). Influence of Free Fatty Acids on Lipid Membrane-Nisin Interaction. Langmuir, 36(45), 13535-13544. https://doi.org/10.1021/ACS.LANGMUIR.0C02266/SUPPL_FILE/LA0C02266_SI_001.PDF
Swain, J., Kamalraj, M., Surya Prakash Rao, H., & Mishra, A. K. (2016). Effect of a glucose-triazole-hydrogenated cardanol conjugate on lipid bilayer membrane organization and thermotropic phase transition. Journal of Molecular Structure, 1081, 124-127. https://doi.org/10.1016/J.MOLSTRUC.2014.10.013
Tamai, N., Uemura, M., Izumikawa, T., Goto, M., Matsuki, H., & Kaneshina, S. (2018). Phase behavior of cholesterol-containing binary membrane of an ether-linked phospholipid, dihexadecylphosphatidylcholine. Colloid and Polymer Science 2018 296:4, 296(4), 697-711. https://doi.org/10.1007/S00396-018-4280-4
Uria Canseco, E., & Perez Casas, S. (2019). Spherical and tubular dimyristoylphosphatidylcholine liposomes. Journal of Thermal Analysis and Calorimetry 2019 139:1, 139(1), 399-409. https://doi.org/10.1007/S10973-019-08416-0
Wei, X., Patil, Y., Ohana, P., Amitay, Y., Shmeeda, H., Gabizon, A., & Barenholz, Y. (2017). Characterization of Pegylated Liposomal Mitomycin C Lipid-Based Prodrug (Promitil) by High Sensitivity Differential Scanning Calorimetry and Cryogenic Transmission Electron Microscopy. Molecular Pharmaceutics, 14(12), 4339-4345. https://doi.org/10.1021/ACS.MOLPHARMACEUT.6B00865
Wen, C. F., Hsieh, Y. L., Wang, C. W., Yang, T. Y., Chang, C. H., & Yang, Y. M. (2017). Effects of Ethanol and Cholesterol on Thermotropic Phase Behavior of Ion-Pair Amphiphile Bilayers. Journal of Oleo Science, 67(3), 295-302. https://doi.org/10.5650/JOS.ESS17170
DOI: https://doi.org/10.23857/pc.v7i2.3623
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/