La importancia de las características principales en las perdidas mecánicas de los motores de combustión interna alternativos

José Israel Guerra-Naranjo, Jairo Edison Guasumba-Maila, Kevin Andres Lluglluna-Simbaña, Wilson Andrés Escobar-Barrazueta

Resumen


En los automóviles un tercio de la energía del combustible se utiliza para superar la fricción en el motor, la transmisión, los neumáticos y los frenos. Elobjetivo de este trabajo fue caracterizar las características principales de las perdidas de fricción en los elementos del motor y sus accesorios, se analiza varias variables como medio de identificación de las perdidas como las presiones medias de rozamiento y presión media de bombeo, así como los accionamientos de los accesorios auxiliares que son parte de la operación del motor para brindar su operación normal. Esto en busca de la eficiencia del vehículo en la actualidad que tanto es requerido para la sostenibilidad del planeta. Se propone varias alternativas para reducir las pérdidas mecánicas como influir en la lubricación con bajas viscosidades de los aceites y aditivos nano lubricantes, diseños de los componentes de los motores tanto internos como externos de formainnovadora que se están optimizando para ahorra combustible e implementando estrategias de control a los accesorios de forma discontinua generando mayor eficiencia.


Palabras clave


Vehículo; pérdida por fricción; fricción del motor; análisis de sistemas; gestión de accesorios.

Texto completo:

PDF HTML XML

Referencias


Abd Alla, G. H. (2002). Computer simulation of a four stroke spark ignition engine. Energy Conversion and Management, 43(8), 1043–1061. https://doi.org/10.1016/S0196-8904(01)00092-9

Ali, M. K. A., & Xianjun, H. (2015). Improving the tribological behavior of internal combustion engines via the addition of nanoparticles to engine oils. In Nanotechnology Reviews (Vol. 4, Issue 4, pp. 347–358). https://doi.org/10.1515/ntrev-2015-0031

Burke, R. D., Brace, C. J., Stark, R., & Pegg, I. (2015). Investigation into the benefits of reduced oil flows in internal combustion engines. International Journal of Engine Research, 16(4), 503–517. https://doi.org/10.1177/1468087414533954

Ciulli, E. (1937). A review of internal combustion engine losses Part 1: Specific studies on the motion of pistons, valves and bearings. The Annals of the American Academy of Political and Social Science, 194(1). https://doi.org/10.1177/000271623719400172

Comfort, A. (2003). An introduction to heavy-duty diesel engine frictional losses and lubricant properties affecting fuel economy - Part I. SAE Technical Papers. https://doi.org/10.4271/2003-01-3225

Daniels, C. C., & Braun, M. J. (2006). The friction behavior of individual components of a spark-ignition engine during warm-up. Tribology Transactions, 49(2), 166–173. https://doi.org/10.1080/05698190500544403

Deuß, T., Ehnis, H., Rose, R., & Künzel, R. (2011). Friction power measurements of a fired diesel engine – influence of piston skirt coatings. MTZ Worldwide, 72(4), 18–23. https://doi.org/10.1365/s38313-011-0036-y

Holmberg, K., Andersson, P., & Erdemir, A. (2012). Global energy consumption due to friction in passenger cars. Tribology International, 47, 221–234. https://doi.org/10.1016/j.triboint.2011.11.022

Holmberg, K., Andersson, P., Nylund, N. O., Mäkelä, K., & Erdemir, A. (2014). Global energy consumption due to friction in trucks and buses. Tribology International, 78, 94–114. https://doi.org/10.1016/j.triboint.2014.05.004

Hoshi, M. (1984). Reducing friction losses in automobile engines. Tribology International, 17(4), 185–189. https://doi.org/10.1016/0301-679X(84)90017-3

Kamil, M., Rahman, M. M., & Bakar, R. A. (2014). An integrated model for predicting engine friction losses in internal combustion engines. International Journal of Automotive and Mechanical Engineering, 9(1), 1695–1708. https://doi.org/10.15282/ijame.9.2013.19.0141

Khuong, L. S., Masjuki, H. H., Zulkifli, N. W. M., Mohamad, E. N., Kalam, M. A., Alabdulkarem, A., Arslan, A., Mosarof, M. H., Syahir, A. Z., & Jamshaid, M. (2017). Effect of gasoline-bioethanol blends on the properties and lubrication characteristics of commercial engine oil. RSC Advances, 7(25), 15005–15019. https://doi.org/10.1039/c7ra00357a

Knauder, C., Allmaier, H., Sander, D. E., & Sams, T. (2019). Investigations of the friction losses of different engine concepts. Part 2: Sub-assembly resolved friction loss comparison of three engines. Lubricants, 7(12). https://doi.org/10.3390/LUBRICANTS7120105

Li, D. F., & Ezzat, H. A. (1983). An automotive piston lubrication model. ASLE Transactions, 26(2), 151–160. https://doi.org/10.1080/05698198308981489

Mihara, Y. (2017). Research trend of friction loss reduction in internal combustion engines. In Tribology Online (Vol. 12, Issue 3, pp. 82–88). https://doi.org/10.2474/trol.12.82

Nguyen, D. V., & Duy, V. N. (2018). Numerical analysis of the forces on the components of a direct diesel engine. Applied Sciences (Switzerland), 8(5). https://doi.org/10.3390/app8050761

Padgurskas, J., Jaškauskas, E., Rukuiža, R., Kavaliova, I., & Grigoriev, F. (2020). Efficiency of Application of Friction Modifiers in Internal Combustion Engines According to the Operational Tests Results. Journal of Friction and Wear, 41(5), 475–479. https://doi.org/10.3103/S1068366620050141

Pan, X., Zhao, Y., Lou, D., & Fang, L. (2020). Gasoline Engine Regarding Fuel Economy. Energies, 26.

Patil, P. N., Dehmukh, D. S., & Patil, V. S. (2019). Analysis of the effect of lpg on the performance and frictional power loss for si engine. International Journal of Innovative Technology and Exploring Engineering, 8(9 Special Issue 3), 1406–1409. https://doi.org/10.35940/ijitee.I3300.0789S319

Patton, K. J., Nitschke, R. C., & Heywood, J. B. (1989). Development and evaluation of a friction model for spark-ignition engines. SAE Technical Papers. https://doi.org/10.4271/890836

Payri González, F., & Desantes Fernández, J. M. (2011). Motores de combustión interna alternativos. Editorial Universitat politécnica de valencia.

Pettersson, N., & Johansson, K. H. (2006). Modelling and control of auxiliary loads in heavy vehicles. International Journal of Control, 79(5), 479–495. https://doi.org/10.1080/00207170600587333

Rao, V. K., Dharkar, N., Kulkarni, G. A., & Mehta, J. S. (2001). Indirect Injection Diesel Engine Improvements for Better Power Output and Lower Emissions. SAE Technical Papers, 2001-Janua(January). https://doi.org/10.4271/2001-26-0025

Rezeka, S. F., & Henein, N. A. (1984). A new approach to evaluate instantaneous friction and its components in internal combustion engines. SAE Technical Papers. https://doi.org/10.4271/840179

Rostek, E., Babiak, M., & Wróblewski, E. (2017). The Influence of Oil Pressure in the Engine Lubrication System on Friction Losses. Procedia Engineering, 192, 771–776. https://doi.org/10.1016/j.proeng.2017.06.133

Sandoval, D., & Heywood, J. B. (2003). An improved friction model for spark-ignition engines. SAE Technical Papers. https://doi.org/10.4271/2003-01-0725

Taraza, D., Henein, N., & Bryzik, W. (2000). Friction losses in multi-cylinder diesel engines. SAE Technical Papers. https://doi.org/10.4271/2000-01-0921

Van Boxtel, H. W., Veenhuizen, P. A., Vroemen, B. G., & Van Druten, R. M. (2007). Innovative actuation system for a new type of pulley CVT applied in a constant speed power take-off. VDI Berichte, 1997, 287–303.

WRÓBLEWSKI, E., & FINKE, S. (2017). Test bench measurement of friction loss in combustion engine. Combustion Engines, 168(1), 46–50. https://doi.org/10.19206/ce-2017-107

Yan, X., Quan, L., & Yang, J. (2015). Analysis on steering characteristics of wheel loader based on electric-hydraulic flow matching principle. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 31(18), 71–78. https://doi.org/10.11975/j.issn.1002-6819.2015.18.011

Yang, C. (2020). A review on the structural analysis of engine assembly. Transactions of the Korean Society of Automotive Engineers, 28(1), 87–92. https://doi.org/10.7467/KSAE.2020.28.1.087




DOI: https://doi.org/10.23857/pc.v6i8.2992

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/