Hidrogeles inteligentes que entregan oxígeno para la regeneración del tejido cartilaginoso: Una revisión

Caterine Yesenia Carrasco-Montesdeoca, Paola Belén Salazar-Montero

Resumen


El cartílago es uno de los tejidos del cuerpo que no se repara por sí solo, los problemas asociados con el cartílago son muy comunes en todo el mundo y se consideran la principal causa de dolor y discapacidad, la falta de oxígeno en el tejido es una de las principales causas que hace que las células proliferen lentamente o a su vez no proliferen, dando como resultado una regeneración casi nula. Este problema despierta el interés de estudiar nuevos materiales con propiedades similares a la matriz extracelular nativa, capaces de entregar suministros de oxígeno, que permitan el crecimiento celular en ambientes hipóxicos para reparar el tejido cartilaginoso. De esta manera, el presente trabajo tiene la finalidad de investigar a través de la metodología de revisión bibliográfica los hidrogeles sus propiedades químicas y físicas óptimas que permitan responder a estímulos externos para liberar varios agentes bioactivos para promover una respuesta tisular deseable. En esta revisión bibliográfica también se explora diferentes tipos y características de hidrogeles y, específicamente, la gelatina metraciloilo por ser un tipo de hidrogel modificado que permite encapsular nanopartículas liberadoras de oxígeno, en presencia de medio acuoso y mediante la porosidad e hinchamiento controladas, permite el intercambio de sustancias entre el medio interno con el medio externo de la matriz. Además, en esta revisión bibliográfica también se discuten los métodos de síntesis de biomateriales liberadores de oxígeno y su mecanismo de liberación.


Palabras clave


Biomateriales inteligentes; regeneración del tejido cartilaginoso; gelatina metacrioilo (GelMA); nanopartículas liberadoras de oxígeno.

Texto completo:

PDF HTML XML

Referencias


He.H, Hongyao.X, Jianying,Z. “Cartilage Tissue Engineering and Regeneration Techniques,” in Cartilage Tissue Engineering and Regeneration Techniques, USA: IntechOpen, 2019.

Pashneh-Tala S, MacNeil S, Claeyssens F, “The Tissue-Engineered Vascular Graft-Past, Present, and Future,” Tissue Eng Part B Rev, 2016; 22, pp. 68–100, doi: 10.1089/ten.teb.2015.0100.

Narcisi R. et al., “Cartilage and Muscle Cell Fate and Origins during Lizard Tail Regeneration,” Front. Bioeng. Biotechnol. | www.frontiersin.org. Bioeng. Biotechnol, 2017. 5, p. 70, doi: 10.3389/fbioe.2017.00070.

Hussein Abdelhay E, “Introductory Chapter: Concepts of Tissue Regeneration,” in Introductory Chapter: Concepts of Tissue Regeneration, In Tissue., InTech, Ed. Egypt, 2018.

Suvarnapathaki S, Wu X, Lantigua D, Nguyen M.A, Camci-Unal G, “Breathing life into engineered tissues using oxygen-releasing biomaterials,” NPG Asia Materials, 2019. 11, no. 1. 2019, doi: 10.1038/s41427-019-0166-2.

Sánchez-Téllez D, Téllez-Jurado L, and Rodríguez-Lorenzo M, “polymers Hydrogels for Cartilage Regeneration, from Polysaccharides to Hybrids,” 2017, doi: 10.3390/polym9120671.

Gulden C, Neslihan A, Annabi N, Ali K, “Oxygen Releasing Biomaterials for Tissue Engineering,” Polym Int, 2017. 62, pp. 843–848, 2013, doi: 10.1002/pi.4502.

Xiong Y, et al., “Nonvasoconstrictive hemoglobin particles as oxygen carriers,” ACS Nano, 2013. 24, pp. 7454–61, doi: 10.1021/nn402073n.

Ward C.L, Corona B.T, Yoo J.J, Harrison B.S, Christ G.J, “Oxygen Generating Biomaterials Preserve Skeletal Muscle Homeostasis under Hypoxic and Ischemic Conditions,” PLoS One, 2013. 8, no. 8, p. 72485, doi: 10.1371/journal.pone.0072485.

Khorshidi S, Karkhaneh A, Bonakdar S, “Fabrication of amine-decorated nonspherical microparticles with calcium peroxide cargo for controlled release of oxygen,” J Biomed Mater Res A, 2020.108, pp. 136–147, doi: 10.1002/jbm.a.36799.

Li Z, Guo X, Guan J, “An oxygen release system to augment cardiac progenitor cell survival and differentiation under hypoxic condition,” Biomaterials, 2012. 33, no. 25, pp. 5914–5923, Sep. 2012, doi: 10.1016/j.biomaterials.2012.05.012.

Rademakers T, Horvath J.M, van Blitterswijk C.A, LaPointe V.L, “Oxygen and nutrient delivery in tissue engineering: Approaches to graft vascularization,” 2019, doi: 10.1002/term.2932.

Carrasco C, et al., “Oxygen-generating smart hydrogels supporting chondrocytes survival in oxygen-free environments,” Colloids Surfaces B Biointerfaces, 2020. 194, p. 111192, Oct. 2020, doi: 10.1016/j.colsurfb.2020.111192.

Silver I, “Measurement of pH and ionic composition of pericellular sites,” Philos Trans R Soc L. B Biol Sci, vol. 271, pp. 261–72, 1975, doi: 10.1098 / rstb.1975.0050.

Grimshaw M, Mason R.M, “Bovine articular chondrocyte function in vitro depends upon oxygen tension,” Osteoarthr. Cartil., 2000. 8, no. 5, pp. 386–392, doi: 10.1053/joca.1999.0314.

Asadi E, Alizadeh E, Salehi R, Khalandi B, Davaran S, Akbarzadeh A, “Nanocomposite hydrogels for cartilage tissue engineering: a review.,” Artif Cells Nanomed Biotechnol, 2018. 46, pp. 465–471, doi: 10.1080/21691401.2017.1345924.

Thoniyot P, et al., “Nanoparticle-Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials,” 2015, doi: 10.1002/advs.201400010.

Gholipourmalekabadi M, Zhao S, Harrison B, Mozafari M, Seifalian A, “Oxygen-Generating Biomaterials: A New, Viable Paradigm for Tissue Engineering?,” Trends Biotechnol, 2016. 34, pp. 1010–1021, doi: 10.1016/j.tibtech.2016.05.012.

Neslihan A, et al., “Oxygen-Generating Photo-Cross-Linkable Hydrogels Support Cardiac Progenitor Cell Survival by Reducing Hypoxia-Induced Necrosis,” ACS Biomater. Sci. Eng., 2017. 9, pp. 964–1971, 2017, doi: 10.1021/acsbiomaterials.6b00109.

Syed Izhar H.A, Muk N, Sing, Jeong Ok K, “An enzyme-modulated oxygen-producing micro-system for regenerative therapeutics,” Int. J. Pharm., 2011. 409, no. 1–2, pp. 203–205, 2011.

Choi J, Hong G, Kwon T, Lim J, “Fabrication of Oxygen Releasing Scaffold by Embedding H2O2-PLGA Microspheres into Alginate-Based Hydrogel Sponge and Its Application for Wound Healing,” Appl. Sci., 2018. 8, p. 1492, doi: 10.3390/app8091492.

Doblado Ponce de León J, “Optimización de un sistema de liberación controlada de acetato de zinc para el tratamiento de la enfermedad de Wilson (enfermedad rara)” 2014.

Zarzycki R, Modrzejewska Z, Nawrotek K, “Drug release from hydrogel matrices,” Ecol. Chem. Eng. S, 2010. 17, pp. 117–136

Colton C, “Oxygen supply to encapsulated therapeutic cells,” Advanced Drug Delivery Reviews, Elsevier, 2014. pp. 93–110, Apr. 10, doi: 10.1016/j.addr.2014.02.007.

Farris A.L, Rindone A.N, Grayson W.L, “Oxygen Delivering Biomaterials for Tissue Engineering,” J Mater Chem B Mater Biol Med, 2016. 4, pp. 3422–3432, doi: 10.1039/C5TB02635K.

Klotz B.J, Gawlitta D, Rosenberg A, Malda J, Melchels A, “Gelatin-Methacryloyl Hydrogels: Towards Biofabrication-Based Tissue Repair,” Trends in Biotechnology, 2016. 34, no. 5. Elsevier Ltd, pp. 394–407, May 01, doi: 10.1016/j.tibtech.2016.01.002.

Xia Q, Xiao H, Pan Y, Wang L, “Microrheology, advances in methods and insights,” Advances in Colloid and Interface Science, 2018. 257. Elsevier B.V., pp. 71–85, Jul. 01, doi: 10.1016/j.cis.2018.04.008.

Nosrati H, Pourmotabed S, Sharifi E, “Una revisión sobre algunos biopolímeros naturales y sus aplicaciones en angiogénesis e ingeniería de tejidos,” Rev. Inf. Biotecnol. Apl., 2018. 5, pp. 81–91, doi: 10.29252 / JABR.05.03.01.

Hoque M, Nuge T, Yeow T, Nordin N, Prasad R.G, “Gelatin Based Scaffolds For Tissue Engineering – A review,” Polym. Res. J., 2015. 9, pp. 15–32.

Catoira M, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F, “Overview of natural hydrogels for regenerative medicine applications,” J Mater Sci Mater Med, 2019. 30, p. 115, doi: 10.1007/s10856-019-6318-7.

Li J, et al., “Advances of injectable hydrogel-based scaffolds for cartilage regeneration,” 2019, doi: 10.1093/rb/rbz022.

La Gatta A, De Rosa M, Frezza M, Catalano C, Meloni M, Schiraldi C, “Biophysical and biological characterization of a new line of hyaluronan-based dermal fillers: A scientific rationale to specific clinical indications,” Mater. Sci. Eng. C, 2016. 68, pp. 565–572, Nov. doi: 10.1016/j.msec.2016.06.008.

Yue K, Trujillo-de Santiago G, Alvarez M, Tamayol A, Annabi N, Khademhosseini A, “Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels,” Biomaterials, 2015. 73. Elsevier Ltd, pp. 254–271, Dec. 01, doi: 10.1016/j.biomaterials.2015.08.045.

He L. et al., “Characterization of biocompatible pig skin collagen and application of collagen-based films for enzyme immobilization,” 2020, doi: 10.1039/c9ra10794k.

Lu Z. et al., “An injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesis,” Biomaterials, 2019. 218, p. 119190, doi: 10.1016/j.biomaterials.2019.05.001.

de Almeida J.C, Frascino A.M, “Regeneración ósea en el seno maxilar,” Odontol. Vital, 2019. 1, pp. 31–36, [Online]. Available: https://revistas.ulatina.ac.cr/index.php/odontologiavital/article/view/257.

Ullah K. et al., “Gelatin-based hydrogels as potential biomaterials for colonic delivery of oxaliplatin,” Int. J. Pharm., 2019. 556, pp. 236–245, Feb, doi: 10.1016/j.ijpharm.2018.12.020.

Liu X, Holzwarth J, Ma Pa, “Functionalized synthetic biodegradable polymer scaffolds for tissue engineering,” Macromol Biosci, 2012. 7, pp. 911–9, doi: 10.1002/mabi.201100466.

Ordikhani F, Mohandes F, Simchi A, “Nanostructured coatings for biomaterials,” in Nanobiomaterials Science, Development and Evaluation, Elsevier Inc., 2017, pp. 191–210.

A. Fatemeh, S. Mohammad, A. Khosro, A. Abolfazl, and D. Soodabeh, “Biodegradable and biocompatible polymers for tissue engineering application: a review,” Artif. Cells, Nanomedicine, Biotechnol., 2017. 45, no. 2, pp. 185–192, doi: 10.3109/21691401.2016.1146731.

Sun M, Sun X, Wang Z, Guo S, Yu G, Yang H, “Synthesis and Properties of Gelatin Methacryloyl (GelMA) Hydrogels and Their Recent Applications in Load-Bearing Tissue,” 2018, doi: 10.3390/polym10111290.

Xiao S. et al., “Gelatin Methacrylate (GelMA)-Based Hydrogels for Cell Transplantation: an Effective Strategy for Tissue Engineering,” Stem Cell Rev Rep, 2019. 15, pp. 664–679, doi: 10.1007/s12015-019-09893-4.

Yoon H. et al., “Cold Water Fish Gelatin Methacryloyl Hydrogel for Tissue Engineering Application,” 2016, doi: 10.1371/journal.pone.0163902.

Zhao X. et al., “Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering,” Adv. Healthc. Mater., 2016. 5, pp. 108–118, doi: 10.1002/adhm.201500005.

Schuurman W. et al., “Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs,” Macromol Biosci, 2013. 13, pp. 551–563, doi: 10.1002/mabi.201200471.

Celikkin N, Mastrogiacomo S, Jaroszewicz J, Walboomers X, Swieszkowski W, “Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration,” J Biomed Mater Res A, 2018. 106, pp. 201–209, doi: 10.1002/jbm.a.36226.




DOI: https://doi.org/10.23857/pc.v6i7.2889

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/