Condición de Legendre–Clebsch bajo hipótesis de rango débil en problemas de control óptimo con restricciones mixtas
Resumen
Palabras clave
Referencias
Andreani, R., Behling, R., Haeser, G., & Silva, P. J. S. (2017). On second-order optimality conditions in nonlinear optimization. Optimization Methods and Software, 32(1), 22–38. https://doi.org/10.1080/10556788.2016.1188926
Andreani, R., Fukuda, E. H., Haeser, G., Santos, D. O., & Secchin, L. D. (2024). Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming. Journal of Optimization Theory and Applications, 200(1), 1–33. https://doi.org/10.1007/s10957-023-02338-6
Andreani, R., Gómez, W., Haeser, G., Mito, L. M., & Ramos, A. (2022). On Optimality Conditions for Nonlinear Conic Programming. Mathematics of Operations Research, 47(3), 2160–2185. https://doi.org/10.1287/moor.2021.1203
Andreani, R., Haeser, G., Mito, L. M., Ramírez, C. H., & Silveira, T. P. (2022). Global Convergence of Algorithms Under Constant Rank Conditions for Nonlinear Second-Order Cone Programming. Journal of Optimization Theory and Applications, 195(1), 42–78. https://doi.org/10.1007/s10957-022-02056-5
Andreani, R., Martínez, J. M., & Schuverdt, M. L. (2010). Constant-rank condition and second-order constraint qualification in nonlinear programming. Journal of Optimization Theory and Applications, 2, 255–275. https://doi.org/10.1007/s10957-010-9671-8
Aronna, M., Bonnans, J., Dmitruk, A., & Lotito, P. (2012). Quadratic order conditions for bang-singular extremals. Numerical Algebra, Control and Optimization, 2(3), 511–546. https://doi.org/10.3934/naco.2012.2.511
Aronna, M. S., Bonnans, J. F., Dmitruk, A. V., & Lotito, P. (2013). Quadratic order conditions for bang-singular extremals. https://doi.org/10.3934/naco.2012.2.511
Arutyunov, A., Karamzin, D., & Pereira, F. (2022a). Maximum Principle and Second-Order Optimality Conditions in Control Problems with Mixed Constraints. Axioms, 11(2), 40. https://doi.org/10.3390/axioms11020040
Arutyunov, A. V., Karamzin, D. Y., & Pereira, F. L. (2022b). Some Remarks on the Issue of Second-order Optimality Conditions in Control Problems with Mixed Constraints. IFAC-PapersOnLine, 55(16), 231–235. https://doi.org/10.1016/j.ifacol.2022.09.029
Arutyunov, A. V., & Zhukovskiy, S. E. (2020). Necessary Optimality Conditions for Optimal Control Problems in the Presence of Degeneration. Differential Equations, 56(2), 238–250. https://doi.org/10.1134/S0012266120020093
Ayala, V., Jouan, P., Torreblanca, M. L., & Zsigmond, G. (2021). Time optimal control for linear systems on Lie groups. Systems & Control Letters, 153, 104956. https://doi.org/10.1016/j.sysconle.2021.104956
Bergounioux, M., & Bourdin, L. (2020). Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints. ESAIM: Control, Optimisation and Calculus of Variations, 26, 35. https://doi.org/10.1051/cocv/2019021
Bhat, H. A., Iqbal, A., & Aftab, M. (2024a). First and second order necessary optimality conditions for multiobjective programming with interval-valued objective functions on Riemannian manifolds. RAIRO - Operations Research, 58(5), 4259–4276. https://doi.org/10.1051/ro/2024157
Bhat, H. A., Iqbal, A., & Aftab, M. (2024b). First and second order necessary optimality conditions for multiobjective programming with interval-valued objective functions on Riemannian manifolds. RAIRO - Operations Research, 58(5), 4259–4276. https://doi.org/10.1051/ro/2024157
Bonnans, J. F., Dupuis, X., & Pfeiffer, L. (2014). Second-Order Necessary Conditions in Pontryagin Form for Optimal Control Problems. SIAM Journal on Control and Optimization, 52(6), 3887–3916. https://doi.org/10.1137/130923452
Bourdin, L., & Ferreira, R. A. C. (2021). Legendre’s Necessary Condition for Fractional Bolza Functionals with Mixed Initial/Final Constraints. Journal of Optimization Theory and Applications, 190(2), 672–708. https://doi.org/10.1007/s10957-021-01908-w
Byrd, R. H., Cocola, J., & Tapia, R. A. (2019). Extending the Pennisi--McCormick Second-Order Sufficiency Theory for Nonlinear Programming to Infinite Dimensions. SIAM Journal on Optimization, 29(3), 1870–1878. https://doi.org/10.1137/19M1239337
Cabré, X., Erneta, I. U., & Felipe-Navarro, J.-C. (2024). A Weierstrass extremal field theory for the fractional Laplacian. Advances in Calculus of Variations, 17(4), 1067–1093. https://doi.org/10.1515/acv-2022-0099
Casas, E., Mateos, M., & Rösch, A. (2024). New second order sufficient optimality conditions for state constrained parabolic control problems. https://doi.org/10.1080/02331934.2024.2314242
Cruz, F., Almeida, R., & Martins, N. (2021). Optimality conditions for variational problems involving distributed-order fractional derivatives with arbitrary kernels. AIMS Mathematics, 6(5), 5351–5369. https://doi.org/10.3934/math.2021315
Deng, L., & Zhang, X. (2020). Second Order Necessary Conditions for Endpoints-Constrained Optimal Control Problems on Riemannian manifolds. http://arxiv.org/abs/2007.05178
Fukuda, E. H., Haeser, G., & Mito, L. M. (2023). On the Weak Second-order Optimality Condition for Nonlinear Semidefinite and Second-order Cone Programming. Set-Valued and Variational Analysis, 31(2), 15. https://doi.org/10.1007/s11228-023-00676-1
Giorgi, G. (2019). Notes on Constraint Qualifications for Second-Order Optimality Conditions. Journal of Mathematics Research, 11(5), 16. https://doi.org/10.5539/jmr.v11n5p16
Goh, B. S. (1966). Necessary conditions for singular extremals involving multiple control variables. SIAM Journal on Control, 4(4), 716–731. https://doi.org/10.1137/0304052
Haeser, G., & Ramos, A. (2020). New Constraint Qualifications with Second-Order Properties in Nonlinear Optimization. Journal of Optimization Theory and Applications, 184(2), 494–506. https://doi.org/10.1007/s10957-019-01603-x
Haeser, G., & Ramos, A. (2021). On constraint qualifications for second-order optimality conditions depending on a single Lagrange multiplier. Operations Research Letters, 49(6), 883–889. https://doi.org/10.1016/j.orl.2021.09.008
Hager, W. W. (2025). Second-Order Sufficient Optimality Conditions in the Calculus of Variations. Journal of Optimization Theory and Applications, 205(1), 17. https://doi.org/10.1007/s10957-025-02639-y
Hehl, A., & Neitzel, I. (2023). Second-order optimality conditions for an optimal control problem governed by a regularized phase-field fracture propagation model. Optimization, 72(6), 1665–1689. https://doi.org/10.1080/02331934.2022.2034814
Jacobson, D. H. (1970). Sufficient Conditions for Nonnegativity of the Second Variation in Singular and Nonsingular Control Problems. SIAM Journal on Control, 8(3), 403–423. https://doi.org/10.1137/0308029
Karamzin, D. Y. (2023). Normality and second-order optimality conditions in state-constrained optimal control problems with bounded minimizers. Journal of Differential Equations, 366, 378–407. https://doi.org/10.1016/j.jde.2023.04.011
Kelley, H. J. (1964). A Second Variation Test for Singular Extremals. 2(8), 1380–1382. https://doi.org/10.2514/3.2562
Luenberger, D. G., & Ye, Y. (2021). Linear and Nonlinear Programming (Vol. 228). Springer International Publishing. https://doi.org/10.1007/978-3-030-85450-8
Ma, X., Yao, W., Ye, J. J., & Zhang, J. (2023). Combined approach with second-order optimality conditions for bilevel programming problems. http://arxiv.org/abs/2108.00179
Malmir, I. (2024). New pure multi-order fractional optimal control problems with constraints: QP and LP methods. ISA Transactions, 153, 155–190. https://doi.org/10.1016/j.isatra.2024.08.003
Molinari, B. F. (1975). Nonnegativity of a Quadratic Functional. SIAM Journal on Control, 13(4), 792–806. https://doi.org/10.1137/0313046
Ndaïrou, F., & Torres, D. F. M. (2023). Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems. Mathematics, 11(19), 4218. https://doi.org/10.3390/math11194218
Osmolovskii, N. P. (2012). Second-order sufficient optimality conditions for control problems with linearly independent gradients of control constraints. ESAIM: Control, Optimisation and Calculus of Variations, 18(2), 452–482. https://doi.org/10.1051/cocv/2011101
Osmolovskii, N. P., & Maurer, H. (2012). Applications to Regular and Bang-Bang Control. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611972368
Robbins, H. M. (1967). A generalized Legendre–Clebsch condition for the singular case of optimal control. IBM Journal of Research and Development, 11(4), 361–372. https://doi.org/10.1147/rd.114.0361
Šimon Hilscher, R., & Zeidan, V. (2018). Sufficiency and sensitivity for nonlinear optimal control problems on time scales via coercivity. ESAIM: Control, Optimisation and Calculus of Variations, 24(4), 1705–1734. https://doi.org/10.1051/cocv/2017070
Soledad Aronna, M., & Tröltzsch, F. (2021). First and second order optimality conditions for the control of Fokker-Planck equations. ESAIM: Control, Optimisation and Calculus of Variations, 27, 15. https://doi.org/10.1051/cocv/2021014
DOI: https://doi.org/10.23857/pc.v10i12.10818
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/












