Condición de Legendre–Clebsch bajo hipótesis de rango débil en problemas de control óptimo con restricciones mixtas

Jesús Rodríguez Flores

Resumen


Este trabajo aborda problemas de control con restricciones mixtas, en los que las condiciones clásicas basadas en la condición de independencia lineal de restricciones (LICQ) y en la condición de Legendre–Clebsch sobre todo el espacio de controles pueden resultar excesivamente conservadoras. Se propone un marco de segundo orden basado en una hipótesis de rango débil que permite gradientes activos linealmente dependientes, con el objetivo de vincular la formulación de la segunda variación en programación no lineal con una condición de Legendre–Clebsch formulada en el espacio de controles. A partir de la segunda variación se introduce un cono crítico de direcciones factibles y un subespacio de direcciones críticas del control, y se demuestra que la no negatividad de la forma cuadrática en dicho cono implica que la hessiana del hamiltoniano respecto del control es semidefinida positiva; en el caso coercivo se obtiene una cota de crecimiento cuadrático sobre esas direcciones. El enfoque se ilustra en un problema lineal–cuadrático con control en un cono poliédrico determinado por tres desigualdades, donde la matriz de gradientes tiene rango dos y la hipótesis de rango estándar falla mientras que la condición de Legendre–Clebsch generalizada sigue siendo válida, proporcionando un criterio más fino en problemas degenerados.

Palabras clave


control óptimo; problemas de Bolza; restricciones mixtas; condiciones de segundo orden; condición de Legendre–Clebsch; hipótesis de rango débil; cono crítico radial.

Texto completo:

PDF HTML

Referencias


Andreani, R., Behling, R., Haeser, G., & Silva, P. J. S. (2017). On second-order optimality conditions in nonlinear optimization. Optimization Methods and Software, 32(1), 22–38. https://doi.org/10.1080/10556788.2016.1188926

Andreani, R., Fukuda, E. H., Haeser, G., Santos, D. O., & Secchin, L. D. (2024). Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming. Journal of Optimization Theory and Applications, 200(1), 1–33. https://doi.org/10.1007/s10957-023-02338-6

Andreani, R., Gómez, W., Haeser, G., Mito, L. M., & Ramos, A. (2022). On Optimality Conditions for Nonlinear Conic Programming. Mathematics of Operations Research, 47(3), 2160–2185. https://doi.org/10.1287/moor.2021.1203

Andreani, R., Haeser, G., Mito, L. M., Ramírez, C. H., & Silveira, T. P. (2022). Global Convergence of Algorithms Under Constant Rank Conditions for Nonlinear Second-Order Cone Programming. Journal of Optimization Theory and Applications, 195(1), 42–78. https://doi.org/10.1007/s10957-022-02056-5

Andreani, R., Martínez, J. M., & Schuverdt, M. L. (2010). Constant-rank condition and second-order constraint qualification in nonlinear programming. Journal of Optimization Theory and Applications, 2, 255–275. https://doi.org/10.1007/s10957-010-9671-8

Aronna, M., Bonnans, J., Dmitruk, A., & Lotito, P. (2012). Quadratic order conditions for bang-singular extremals. Numerical Algebra, Control and Optimization, 2(3), 511–546. https://doi.org/10.3934/naco.2012.2.511

Aronna, M. S., Bonnans, J. F., Dmitruk, A. V., & Lotito, P. (2013). Quadratic order conditions for bang-singular extremals. https://doi.org/10.3934/naco.2012.2.511

Arutyunov, A., Karamzin, D., & Pereira, F. (2022a). Maximum Principle and Second-Order Optimality Conditions in Control Problems with Mixed Constraints. Axioms, 11(2), 40. https://doi.org/10.3390/axioms11020040

Arutyunov, A. V., Karamzin, D. Y., & Pereira, F. L. (2022b). Some Remarks on the Issue of Second-order Optimality Conditions in Control Problems with Mixed Constraints. IFAC-PapersOnLine, 55(16), 231–235. https://doi.org/10.1016/j.ifacol.2022.09.029

Arutyunov, A. V., & Zhukovskiy, S. E. (2020). Necessary Optimality Conditions for Optimal Control Problems in the Presence of Degeneration. Differential Equations, 56(2), 238–250. https://doi.org/10.1134/S0012266120020093

Ayala, V., Jouan, P., Torreblanca, M. L., & Zsigmond, G. (2021). Time optimal control for linear systems on Lie groups. Systems & Control Letters, 153, 104956. https://doi.org/10.1016/j.sysconle.2021.104956

Bergounioux, M., & Bourdin, L. (2020). Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints. ESAIM: Control, Optimisation and Calculus of Variations, 26, 35. https://doi.org/10.1051/cocv/2019021

Bhat, H. A., Iqbal, A., & Aftab, M. (2024a). First and second order necessary optimality conditions for multiobjective programming with interval-valued objective functions on Riemannian manifolds. RAIRO - Operations Research, 58(5), 4259–4276. https://doi.org/10.1051/ro/2024157

Bhat, H. A., Iqbal, A., & Aftab, M. (2024b). First and second order necessary optimality conditions for multiobjective programming with interval-valued objective functions on Riemannian manifolds. RAIRO - Operations Research, 58(5), 4259–4276. https://doi.org/10.1051/ro/2024157

Bonnans, J. F., Dupuis, X., & Pfeiffer, L. (2014). Second-Order Necessary Conditions in Pontryagin Form for Optimal Control Problems. SIAM Journal on Control and Optimization, 52(6), 3887–3916. https://doi.org/10.1137/130923452

Bourdin, L., & Ferreira, R. A. C. (2021). Legendre’s Necessary Condition for Fractional Bolza Functionals with Mixed Initial/Final Constraints. Journal of Optimization Theory and Applications, 190(2), 672–708. https://doi.org/10.1007/s10957-021-01908-w

Byrd, R. H., Cocola, J., & Tapia, R. A. (2019). Extending the Pennisi--McCormick Second-Order Sufficiency Theory for Nonlinear Programming to Infinite Dimensions. SIAM Journal on Optimization, 29(3), 1870–1878. https://doi.org/10.1137/19M1239337

Cabré, X., Erneta, I. U., & Felipe-Navarro, J.-C. (2024). A Weierstrass extremal field theory for the fractional Laplacian. Advances in Calculus of Variations, 17(4), 1067–1093. https://doi.org/10.1515/acv-2022-0099

Casas, E., Mateos, M., & Rösch, A. (2024). New second order sufficient optimality conditions for state constrained parabolic control problems. https://doi.org/10.1080/02331934.2024.2314242

Cruz, F., Almeida, R., & Martins, N. (2021). Optimality conditions for variational problems involving distributed-order fractional derivatives with arbitrary kernels. AIMS Mathematics, 6(5), 5351–5369. https://doi.org/10.3934/math.2021315

Deng, L., & Zhang, X. (2020). Second Order Necessary Conditions for Endpoints-Constrained Optimal Control Problems on Riemannian manifolds. http://arxiv.org/abs/2007.05178

Fukuda, E. H., Haeser, G., & Mito, L. M. (2023). On the Weak Second-order Optimality Condition for Nonlinear Semidefinite and Second-order Cone Programming. Set-Valued and Variational Analysis, 31(2), 15. https://doi.org/10.1007/s11228-023-00676-1

Giorgi, G. (2019). Notes on Constraint Qualifications for Second-Order Optimality Conditions. Journal of Mathematics Research, 11(5), 16. https://doi.org/10.5539/jmr.v11n5p16

Goh, B. S. (1966). Necessary conditions for singular extremals involving multiple control variables. SIAM Journal on Control, 4(4), 716–731. https://doi.org/10.1137/0304052

Haeser, G., & Ramos, A. (2020). New Constraint Qualifications with Second-Order Properties in Nonlinear Optimization. Journal of Optimization Theory and Applications, 184(2), 494–506. https://doi.org/10.1007/s10957-019-01603-x

Haeser, G., & Ramos, A. (2021). On constraint qualifications for second-order optimality conditions depending on a single Lagrange multiplier. Operations Research Letters, 49(6), 883–889. https://doi.org/10.1016/j.orl.2021.09.008

Hager, W. W. (2025). Second-Order Sufficient Optimality Conditions in the Calculus of Variations. Journal of Optimization Theory and Applications, 205(1), 17. https://doi.org/10.1007/s10957-025-02639-y

Hehl, A., & Neitzel, I. (2023). Second-order optimality conditions for an optimal control problem governed by a regularized phase-field fracture propagation model. Optimization, 72(6), 1665–1689. https://doi.org/10.1080/02331934.2022.2034814

Jacobson, D. H. (1970). Sufficient Conditions for Nonnegativity of the Second Variation in Singular and Nonsingular Control Problems. SIAM Journal on Control, 8(3), 403–423. https://doi.org/10.1137/0308029

Karamzin, D. Y. (2023). Normality and second-order optimality conditions in state-constrained optimal control problems with bounded minimizers. Journal of Differential Equations, 366, 378–407. https://doi.org/10.1016/j.jde.2023.04.011

Kelley, H. J. (1964). A Second Variation Test for Singular Extremals. 2(8), 1380–1382. https://doi.org/10.2514/3.2562

Luenberger, D. G., & Ye, Y. (2021). Linear and Nonlinear Programming (Vol. 228). Springer International Publishing. https://doi.org/10.1007/978-3-030-85450-8

Ma, X., Yao, W., Ye, J. J., & Zhang, J. (2023). Combined approach with second-order optimality conditions for bilevel programming problems. http://arxiv.org/abs/2108.00179

Malmir, I. (2024). New pure multi-order fractional optimal control problems with constraints: QP and LP methods. ISA Transactions, 153, 155–190. https://doi.org/10.1016/j.isatra.2024.08.003

Molinari, B. F. (1975). Nonnegativity of a Quadratic Functional. SIAM Journal on Control, 13(4), 792–806. https://doi.org/10.1137/0313046

Ndaïrou, F., & Torres, D. F. M. (2023). Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems. Mathematics, 11(19), 4218. https://doi.org/10.3390/math11194218

Osmolovskii, N. P. (2012). Second-order sufficient optimality conditions for control problems with linearly independent gradients of control constraints. ESAIM: Control, Optimisation and Calculus of Variations, 18(2), 452–482. https://doi.org/10.1051/cocv/2011101

Osmolovskii, N. P., & Maurer, H. (2012). Applications to Regular and Bang-Bang Control. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611972368

Robbins, H. M. (1967). A generalized Legendre–Clebsch condition for the singular case of optimal control. IBM Journal of Research and Development, 11(4), 361–372. https://doi.org/10.1147/rd.114.0361

Šimon Hilscher, R., & Zeidan, V. (2018). Sufficiency and sensitivity for nonlinear optimal control problems on time scales via coercivity. ESAIM: Control, Optimisation and Calculus of Variations, 24(4), 1705–1734. https://doi.org/10.1051/cocv/2017070

Soledad Aronna, M., & Tröltzsch, F. (2021). First and second order optimality conditions for the control of Fokker-Planck equations. ESAIM: Control, Optimisation and Calculus of Variations, 27, 15. https://doi.org/10.1051/cocv/2021014




DOI: https://doi.org/10.23857/pc.v10i12.10818

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/