Inteligencia artificial aplicada a la predicción de inundaciones: Una revisión sistemática bajo el enfoque PRISMA 2020

Aurora Magdalena Gaibor Garófalo

Resumen


La creciente frecuencia e intensidad de inundaciones a nivel global, impulsada por el cambio climático y la expansión urbana no planificada, ha generado una necesidad urgente de métodos predictivos más eficientes. En este contexto, la inteligencia artificial (IA) se ha consolidado como una herramienta importante en el modelado y la predicción de eventos hidrometereológicos extremos.  El presente estudio realiza una revisión sistemática de literatura, basada en el protocolo PRISMA 2020, con el objetivo de analizar las principales tendencias científicas en el uso de algoritmos de IA para la predicción de inundaciones, la búsqueda se efectuó en las bases de datos Scopus, Web of Science y ScienceDirect. En análisis bibliométrico permitió identificar los modelos más empleados, las regiones con mayor producción científica y las revistas más influyentes. Los resultados evidencian un notable crecimiento en esta línea de investigación, destacando la proliferación de modelos híbridos, redes neuronales y enfoques de aprendizaje automático aplicados a contextos de alto riesgo climático.


Palabras clave


Inteligencia artificial; predicción de inundaciones; modelos híbridos; aprendizaje automático; riesgo climático.

Texto completo:

PDF HTML

Referencias


Asif, M., Li, X., Rana, M., & Shah, M. A. (2025). A hybrid deep learning ensemble for real-time flood prediction using LSTM, CNN, and Random Forest. Environmental Modelling & Software, 167, 106537. https://doi.org/https://doi.org/10.1016/j.envsoft.2024.106537

Banco Mundial. (2022). Flood risk management: A strategic approach. https://www.worldbank.org/en/topic/waterresourcesmanagement/publication/flood-risk-management-a-strategic-approach

Beven, K. (2012). Rainfall-runoff modelling: The primer (2nd ed.). Wiley-Blackwell.

Chen, X., Li, Y., & Wang, J. (2022). A hybrid CNN LSTM model for river flood forecasting in the Mekong Delta. Water Resources Management, 36(5), 1010–1025.

Choubin, B., Moradi, E., Golshan, M., Bahri, M., & Alizadeh, S. (2020). An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Science of the Total Environment, 651, 2087–2096. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.09.236

da Silva, M. F., Souza, R. C., & Oliveira, L. A. (2023). Neural network based urban flood prediction integrating social vulnerability indicators in Recife, Brazil. Journal of Environmental Management, 330, 117015.

Elmahdi, A., Salem, H., & Ben Said, S. (2023). Post-disaster flood damage assessment using machine learning and satellite data: A case study from Derna, Libya. Natural Hazards, 117, 351–374. https://doi.org/https://doi.org/10.1007/s11069-023-06044-0

Gupta, R., Singh, S., & Kumar, P. (2022). Optimization of neural network–based flood forecasting models using PSO and genetic algorithms. Hydrology Research, 53(1), 58–72. https://doi.org/https://doi.org/10.2166/nh.2022.089

Hu, H., Zhang, W., Wang, L., & Chen, H. (2022). A hybrid CNN–GRU model for real-time flood forecasting. Water Resources Management, 36(1), 99–116. https://doi.org/https://doi.org/10.1007/s11269-021-02973-7

IPCC. (2021). Sixth Assessment Report: Climate Change 2021 – The Physical Science Basis. Cambridge University Press: https://www.ipcc.ch/report/ar6/wg1/

Kaur, J., Singh, R., & Kumar, A. (2021). Real time flood prediction using ANN: A case study of the Mahanadi River. International Journal of Hydrology Science and Technology, 11(4), 275–291.

Khosravi, K., Kashani, F., & Ghaemi, S. (2021). Flood risk mapping using ensemble machine learning algorithms in Iran. Environmental Research Communications, 3(2), 025012.

Kumar, V., Yadav, R., & Singh, A. (2024). Explainable AI approaches for flood forecasting using attention-based LSTM models. Journal of Hydrology, 628, 130289. https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.130289

Lee, H., Nguyen, Q. T., & Kim, S. (2025). Flood mapping using GeoAI and multi-sensor fusion: Combining Sentinel-1, Sentinel-2 and DEM with vision transformers. Remote Sensing of Environment, 310, 113042. https://doi.org/https://doi.org/10.1016/j.rse.2025.113042

Luo, Y., Zhang, X., & Liu, J. (2020). Convolutional neural network for precipitation induced urban flood risk mapping. Journal of Hydrology, 586, 124826.

Mosavi, A., Ozturk, P., & Chau, K. W. (2018). Flood prediction using machine learning models: Literature review. Water, 10(11), 1536. https://doi.org/ https://doi.org/10.3390/w10111536

Nguemeni , K. J., Tchatchoua, R., & Tassi, R. (2024). Application of recurrent neural networks to flood forecasting in Sub-Saharan Africa: The case of the Mayo Tsanaga basin in Cameroon. Hydrology Research, 55(2), 202–215. https://doi.org/ https://doi.org/10.2166/nh.2024.015

Nie, L., Chen, Y., & Zhang, D. (2023). All-day cloud property and occurrence probability dataset based on satellite remote sensing data. Scientific Data, 10, 387. https://doi.org/https://doi.org/10.1038/s41597-023-02311-1

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, 71. https://doi.org/https://doi.org/10.1136/bmj.n71

Pham, T. H., Tran, N. M., & Nguyen, H. V. (2021). Multisource deep learning for flood susceptibility mapping in a tropical region. Remote Sensing, 13(9), 1753.

Rahmati, O., Omidvar, E., Choubin, B., & Kisi, O. (2021). Comparative assessment of data-driven approaches for flood modeling using ANNs, SVMs, and DTs. Journal of Hydrology, 593, 125935. https://doi.org/https://doi.org/10.1016/j.jhydrol.2020.125935

Saha, P., Roy, S., & Dutta, D. (2023). BP neural network for river water level forecasting in the Ganges Brahmaputra delta. Hydrology Research, 54(2), 188–204.

Smith, J. A., Ramesh, A., & Taylor, J. R. (2024). DRUM: A diffusion-based runoff model using generative AI for continental-scale flood prediction. Scientific Reports, 14, 9921. https://doi.org/ https://doi.org/10.1038/s41598-024-20932-8

Yaseen, Z. M., El shafie, A., Jaafar, O., & Afan, H. (2015). Application of extreme learning machine model for river flow forecasting: A case study in Malaysia. Journal of Hydrology, 536, 287–299. https://doi.org/https://doi.org/10.1016/j.jhydrol.2016.02.014

Zhou, J., Li, H., Ma, Y., Wang, J., & Chen, X. (2021). Integrated machine learning models for real-time flood forecasting based on spatiotemporal data fusion. Environmental Modelling & Software, 142, 105063. https://doi.org/https://doi.org/10.1016/j.envsoft.2021.105063




DOI: https://doi.org/10.23857/pc.v10i11.10747

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/