Compuestos obtenidos a partir de esponjas de mar con potencial aplicación en el tratamiento del Alzheimer

Jefferson Andrés Lima Andrade, Cristina Lizeth Godoy Rivera, Mishell Natali Pacheco Heredia, Cesar David Guerra Naranjo

Resumen


La diversidad biológica marina ha demostrado ser un recurso importante en la investigación biotecnológica, sobre todo el de las esponjas marinas, pues variadas estructuras químicas de sus metabolitos han presentado propiedades prometedoras en el desarrollo de nuevas drogas para el tratamiento de enfermedades. Estos componentes tienen el potencial para tratar enfermedades neurodegenerativas como el Alzheimer, uno de los padecimientos más comunes en pacientes de edad avanzada. Este trabajo recolectó investigaciones de la última década, donde se reportan ensayos in vitro e in vivo, de productos derivados de esponjas marinas, que hayan sido evaluados como una potencial droga para tratar el Alzheimer; se buscó determinar los factores causales, sobre los cuales se enfocaron las investigaciones con estos compuestos, además describir mecanismos de acción de estos productos marinos. Los resultados permitieron evidenciar que la mayor parte de estos compuestos bioactivos fueron alcaloides, terpenos, y flavonoides, siendo capaces de inhibir la agregación de Amiloide β, y α sinucleína, inhibición enzimática de Enzima Acetilcolinesterasa, y protección durante estrés oxidativo, propiedades atribuidas a la gran adaptabilidad de las esponjas, lo que se ve reflejado en las interesantes estructuras químicas de los productos derivados de estos organismos. Resultados en estas investigaciones, permiten describir compuestos con potencial en el tratamiento del Alzheimer encontrados en esponjas marinas, marcando una tendencia para nuevas exploraciones en la búsqueda de productos bioactivos derivados de estos organismos, así como también brindar un enfoque para el desarrollo de nuevas drogas que pueden ser empleadas en este tipo de enfermedades neurodegenerativas.


Palabras clave


Esponja marina; Bioactividad; Enfermedad del Alzheimer.

Texto completo:

PDF HTML

Referencias


Alghazwi, M., Smid, S., & Zhang, W. (2018). In vitro protective activity of South Australian marine sponge and macroalgae extracts against amyloid beta (Aβ1–42) induced neurotoxicity in PC-12 cells. Neurotoxicology and Teratology, 68, 72–83. https://doi.org/10.1016/j.ntt.2018.05.002

Alvariño, R., Alfonso, A., Pech-Puch, D., Gegunde, S., Rodríguez, J., Vieytes, M. R., Jiménez, C., & Botana, L. M. (2022). Furanoditerpenes from Spongia (Spongia) tubulifera Display Mitochondrial-Mediated Neuroprotective Effects by Targeting Cyclophilin D. ACS Chemical Neuroscience, 13(16), 2449–2463. https://doi.org/10.1021/acschemneuro.2c00208

Alvariño, R., Alfonso, A., Tabudravu, J. N., González-Jartín, J., Al Maqbali, K. S., Elhariry, M., Vieytes, M. R., & Botana, L. M. (2024). Psammaplin A and Its Analogs Attenuate Oxidative Stress in Neuronal Cells through Peroxisome Proliferator-Activated Receptor γ Activation. Journal of Natural Products, 87(4), 1187–1196. https://doi.org/10.1021/acs.jnatprod.4c00153

Alvariño, R., Alonso, E., Abbasov, M. E., Chaheine, C. M., Conner, M. L., Romo, D., Alfonso, A., & Botana, L. M. (2019). Gracilin A Derivatives Target Early Events in Alzheimer’s Disease: In Vitro Effects on Neuroinflammation and Oxidative Stress. ACS Chemical Neuroscience, 10(9), 4102–4111. https://doi.org/10.1021/acschemneuro.9b00329

Aristyawan, A. D., Setyaningtyas, V. F., Wahyuni, T. S., Widyawaruyanti, A., Ingkaninan, K., & Suciati, S. (2022). In vitro acetylcholinesterase inhibitory activities of fractions and iso-agelasine C isolated from the marine sponge Agelas nakamurai. Journal of Research in Pharmacy, 26(2), 279–286. https://doi.org/10.29228/jrp.126

Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., & Jones, E. (2011). Alzheimer’s disease. Www.Thelancet.Com, 377, 1019–1050. https://doi.org/10.1016/S0140

Beedessee, G., Ramanjooloo, A., Surnam-Boodhun, R., Van Soest, R. W. M., & Marie, D. E. P. (2013). Acetylcholinesterase-Inhibitory Activities of the Extracts from Sponges Collected in Mauritius Waters. CHEMISTRY & BIODIVERSITY , 442–451.

Botić, T., Defant, A., Zanini, P., Žužek, M. C., Frangež, R., Janussen, D., Kersken, D., Knez, Ž., Mancini, I., & Sepčić, K. (2017). Discorhabdin alkaloids from Antarctic Latrunculia spp. sponges as a new class of cholinesterase inhibitors. European Journal of Medicinal Chemistry, 136, 294–304. https://doi.org/10.1016/j.ejmech.2017.05.019

Briggs, R., Kennelly, S. P., & O’neill, D. (2016). DRUG THERAPIES IN…. In Clinical Medicine (Vol. 16).

Caplan, S. L., Zheng, B., Dawson-Scully, K., White, C. A., & West, L. M. (2016). Pseudopterosin a: Protection of synaptic function and potential as a neuromodulatory agent. Marine Drugs, 14(3). https://doi.org/10.3390/md14030055

Cha, S. H., Hwang, Y., Heo, S. J., & Jun, H. S. (2019). Indole-4-carboxaldehyde Isolated from Seaweed, Sargassum thunbergii, Attenuates Methylglyoxal-Induced Hepatic Inflammation. Marine Drugs, 17(9). https://doi.org/10.3390/md17090486

Cheng, C., Othman, E. M., Reimer, A., Grüne, M., Kozjak-Pavlovic, V., Stopper, H., Hentschel, U., & Abdelmohsen, U. R. (2016). Ageloline A, new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp. SBT345. Tetrahedron Letters, 57(25), 2786–2789. https://doi.org/10.1016/J.TETLET.2016.05.042

Da Conceição Rivanor, R. L., Chaves, H. V., Do Val, D. R., De Freitas, A. R., Lemos, J. C., Rodrigues, J. A. G., Pereira, K. M. A., De Araújo, I. W. F., Bezerra, M. M., & Benevides, N. M. B. (2014). A lectin from the green seaweed Caulerpa cupressoides reduces mechanical hyper-nociception and inflammation in the rat temporomandibular joint during zymosan-induced arthritis. International Immunopharmacology, 21(1), 34–43. https://doi.org/10.1016/j.intimp.2014.04.009

Desoubzdanne, D., Marcourt, L., Raux, R., Chevalley, S., Dorin, D., Doerig, C., Valentin, A., Ausseil, F., & Debitus, C. (2008). Alisiaquinones and alisiaquinol, dual inhibitors of Plasmodium falciparum enzyme targets from a New Caledonian deep water sponge. Journal of Natural Products, 71(7), 1189–1192. https://doi.org/10.1021/NP8000909

Devkar, H. U., Thakur, N. L., & Kaur, P. (2023). Marine-derived antimicrobial molecules from the sponges and their associated bacteria. In Canadian Journal of Microbiology (Vol. 69, Issue 1, pp. 1–16). Canadian Science Publishing. https://doi.org/10.1139/cjm-2022-0147

Esposito, G., Mai, L. H., Longeon, A., Mangoni, A., Durieu, E., Meijer, L., Soest, R. Van, Costantino, V., & Bourguet-Kondracki, M. L. (2019). A collection of bioactive nitrogen-containing molecules from the marine sponge acanthostrongylophora ingens. Marine Drugs, 17(8). https://doi.org/10.3390/md17080472

Esposito, R., Federico, S., Glaviano, F., Somma, E., Zupo, V., & Costantini, M. (2022). Bioactive Compounds from Marine Sponges and Algae: Effects on Cancer Cell Metabolome and Chemical Structures. In International Journal of Molecular Sciences (Vol. 23, Issue 18). MDPI. https://doi.org/10.3390/ijms231810680

Grosso, C., Valentão, P., Ferreres, F., & Andrade, P. B. (2014). Review: Bioactive marine drugs and marine biomaterials for brain diseases. In Marine Drugs (Vol. 12, Issue 5, pp. 2539–2589). MDPI AG. https://doi.org/10.3390/md12052539

Hong, L.-L., Ding, Y.-F., Zhang, W., & Lin, H.-W. (2022). Chemical and biological diversity of new natural products from marine sponges: a review (2009–2018). Marine Life Science & Technology, 4(3), 356–372. https://doi.org/10.1007/s42995-022-00132-3

Karthikeyan, A., Joseph, A., & Nair, B. G. (2022). Promising bioactive compounds from the marine environment and their potential effects on various diseases. In Journal of Genetic Engineering and Biotechnology (Vol. 20, Issue 1). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1186/s43141-021-00290-4

Keffer, J. L., Plaza, A., & Bewley, C. A. (2009). Motualevic acids A-F, antimicrobial acids from the sponge Siliquariaspongia sp. Organic Letters, 11(5), 1087–1090. https://doi.org/10.1021/ol802890b

Koh, E.-J., Kim, K.-J., Choi, J., Kang, D.-H., & Lee, B.-Y. (2018). Spirulina maxima extract prevents cell death through BDNF activation against amyloid beta 1-42 (Aβ1-42) induced neurotoxicity in PC12 cells. Neuroscience Letters, 673, 33–38. https://doi.org/https://doi.org/10.1016/j.neulet.2018.02.057

Lauritano, C., & Ianora, A. (2016). Marine organisms with anti-diabetes properties. In Marine Drugs (Vol. 14, Issue 12). MDPI AG. https://doi.org/10.3390/md14120220

Lee, S. R., Pronto, J. R. D., Sarankhuu, B. E., Ko, K. S., Rhee, B. D., Kim, N., Mishchenko, N. P., Fedoreyev, S. A., Stonik, V. A., & Han, J. (2014). Acetylcholinesterase inhibitory activity of pigment echinochrome A from sea urchin Scaphechinus mirabilis. Marine Drugs, 12(6), 3560–3573. https://doi.org/10.3390/md12063560

Lei, P., Ayton, S., & Bush, A. I. (2021). The essential elements of Alzheimer’s disease. In Journal of Biological Chemistry (Vol. 296). American Society for Biochemistry and Molecular Biology Inc. https://doi.org/10.1074/jbc.REV120.008207

Leirós, M., Alonso, E., Rateb, M. E., Houssen, W. E., Ebel, R., Jaspars, M., Alfonso, A., & Botana, L. M. (2015). Gracilins: Spongionella-derived promising compounds for Alzheimer disease. Neuropharmacology, 93, 285–293. https://doi.org/10.1016/j.neuropharm.2015.02.015

Leirós, M., Sánchez, J. A., Alonso, E., Rateb, M. E., Houssen, W. E., Ebel, R., Jaspars, M., Alfonso, A., & Botana, L. M. (2014a). Spongionella Secondary Metabolites Protect Mitochondrial Function in Cortical Neurons against Oxidative Stress. Marine Drugs, 12(2), 700. https://doi.org/10.3390/MD12020700

Leirós, M., Sánchez, J. A., Alonso, E., Rateb, M. E., Houssen, W. E., Ebel, R., Jaspars, M., Alfonso, A., & Botana, L. M. (2014b). Spongionella secondary metabolites protect mitochondrial function in cortical neurons against oxidative stress. Marine Drugs, 12(2), 700–718. https://doi.org/10.3390/md12020700

Li, F., Maskey, R. P., Qin, S., Sattler, I., Fiebig, H. H., Maier, A., Zeeck, A., & Laatsch, H. (2005). Chinikomycins A and B: Isolation, structure elucidation, and biological activity of novel antibiotics from a marine Streptomyces sp. isolate M045. Journal of Natural Products, 68(3), 349–353. https://doi.org/10.1021/np030518r

Liu, J., Ma, L., Wu, N., Liu, G., Zheng, L., & Lin, X. (2014). Aplysin sensitizes cancer cells to TRAIL by suppressing p38 MAPK/survivin pathway. Marine Drugs, 12(9), 5072–5088. https://doi.org/10.3390/md12095072

Loya, S., & Hizi, A. (1990). The inhibition of human immunodeficiency virus type 1 reverse transcriptase by avarol and avarone derivatives (Vol. 269, Issue 1).

Luduena, R. F., Roach, M. C., Prasad, V., & Pettit, G. R. (1993). Interaction of halichondrin B and homohalichondrin B with bovine brain tubulin. Biochemical Pharmacology, 45(2), 421–427. https://doi.org/10.1016/0006-2952(93)90079-C

Ma, C., Hong, F., & Yang, S. (2022). Amyloidosis in Alzheimer’s Disease: Pathogeny, Etiology, and Related Therapeutic Directions. In Molecules (Vol. 27, Issue 4). MDPI. https://doi.org/10.3390/molecules27041210

Manda, S., Sharma, S., Wani, A., Joshi, P., Kumar, V., Guru, S. K., Bharate, S. S., Bhushan, S., Vishwakarma, R. A., Kumar, A., & Bharate, S. B. (2016). Discovery of a marine-derived bis-indole alkaloid fascaplysin, as a new class of potent P-glycoprotein inducer and establishment of its structure-activity relationship. European Journal of Medicinal Chemistry, 107, 1–11. https://doi.org/10.1016/j.ejmech.2015.10.049

Mantzavinos, V., & Alexiou, A. (2017). Biomarkers for Alzheimer’s Disease Diagnosis. Current Alzheimer Research, 14(11). https://doi.org/10.2174/1567205014666170203125942

Martignago, C. C. S., Soares-Silva, B., Parisi, J. R., Silva, L. C. S. e., Granito, R. N., Ribeiro, A. M., Renno, A. C. M., de Sousa, L. R. F., & Aguiar, A. C. C. (2023). Terpenes extracted from marine sponges with antioxidant activity: a systematic review. In Natural Products and Bioprospecting (Vol. 13, Issue 1). Springer. https://doi.org/10.1007/s13659-023-00387-y

Miao, S., He, Q., Li, C., Wu, Y., Liu, M., Chen, Y., Qi, S., & Gong, K. (2022). Aaptamine–a dual acetyl–and butyrylcholinesterase inhibitor as potential anti-Alzheimer’s disease agent. Pharmaceutical Biology, 60(1), 1502–1510. https://doi.org/10.1080/13880209.2022.2102657

Miguel-Gordo, M., Gegunde, S., Calabro, K., Jennings, L. K., Alfonso, A., Genta-Jouve, G., Vacelet, J., Botana, L. M., & Thomas, O. P. (2019). Bromotryptamine and Bromotyramine Derivatives from the Tropical Southwestern Pacific Sponge Narrabeena nigra. Marine Drugs, 17(6). https://doi.org/10.3390/md17060319

Nabil-Adam, A., Youssef, F. S., Ashour, M. L., & Shreadah, M. A. (2023). Neuroprotective and nephroprotective effects of Ircinia sponge in polycyclic aromatic hydrocarbons (PAHs) induced toxicity in animal model: a pharmacological and computational approach. Environmental Science and Pollution Research, 30(34), 82162–82177. https://doi.org/10.1007/s11356-023-27916-z

Nunes, C. de J., Santos, C. C., Soares, E. N., Lima, I. S., Alves, U. V., Lanna, E., Batista, R., do Nascimento, R. P., & Costa, S. L. (2024). Methanolic Extract and Brominated Compound from the Brazilian Marine Sponge Aplysina fulva Are Neuroprotective and Modulate Inflammatory Profile of Microglia. Marine Drugs, 22(6). https://doi.org/10.3390/md22060235

Olsen, E. K., Hansen, E., Moodie, L. W. K., Isaksson, J., Sepčić, K., Cergolj, M., Svenson, J., & Andersen, J. H. (2016). Marine AChE inhibitors isolated from Geodia barretti: Natural compounds and their synthetic analogs. Organic and Biomolecular Chemistry, 14(5), 1629–1640. https://doi.org/10.1039/c5ob02416a

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. In The BMJ (Vol. 372). BMJ Publishing Group. https://doi.org/10.1136/bmj.n71

Pan, H., Qiu, H., Zhang, K., Zhang, P., Liang, W., Yang, M., Mou, C., Lin, M., He, M., Xiao, X., Zhang, D., Wang, H., Liu, F., Li, Y., Jin, H., Yan, X., Liang, H., & Cui, W. (2019). Fascaplysin Derivatives Are Potent Multitarget Agents against Alzheimer’s Disease: In Vitro and in Vivo Evidence. ACS Chemical Neuroscience, 4741–4756. https://doi.org/10.1021/acschemneuro.9b00503

Pandey, S., Sree, A., Sethi, D. P., Kumar, C. G., Kakollu, S., Chowdhury, L., & Dash, S. S. (2014). A marine sponge associated strain of Bacillus subtilis and other marine bacteria can produce anticholinesterase compounds. Microbial Cell Factories, 13(1). https://doi.org/10.1186/1475-2859-13-24

Park, S. J., & Jeon, Y. J. (2012). Dieckol from Ecklonia cava suppresses the migration and invasion of HT1080 cells by inhibiting the focal adhesion kinase pathway downstream of Rac1-ROS signaling. Molecules and Cells, 33(2), 141–149. https://doi.org/10.1007/s10059-012-2192-6

Paul, V. J., Freeman, C. J., & Agarwal, V. (2019). Chemical Ecology of Marine Sponges: New Opportunities through “-Omics.” Integrative and Comparative Biology, 59(4), 765–776. https://doi.org/10.1093/icb/icz014

Prebble, D. W., Er, S., Hlushchuk, I., Domanskyi, A., Airavaara, M., Ekins, M. G., Mellick, G. D., & Carroll, A. R. (2022). α-Synuclein binding activity of the plant growth promoter asterubine. Bioorganic & Medicinal Chemistry Letters, 64, 128677. https://doi.org/10.1016/J.BMCL.2022.128677

Prebble, D. W., Er, S., Xu, M., Hlushchuk, I., Domanskyi, A., Airavaara, M., Ekins, M. G., Mellick, G. D., & Carroll, A. R. (2022). α-synuclein aggregation inhibitory activity of the bromotyrosine derivatives aerothionin and aerophobin-2 from the subtropical marine sponge Aplysinella sp. Results in Chemistry, 4. https://doi.org/10.1016/j.rechem.2022.100472

Prebble, D. W., Voser, T. M., Er, S., Hlushchuk, I., Domanskyi, A., Airavaara, M., Ekins, M. G., Mellick, G. D., & Carroll, A. R. (2022). Hesperine, a new imidazole alkaloid and α-synuclein binding activity of 1-methyl-1,2,7,8-tetrahydro-2,8-dioxoadenosine from the marine sponge Clathria (Thalysias) cf. hesperia. Results in Chemistry, 4. https://doi.org/10.1016/j.rechem.2022.100302

Putri, H. R., Kristiana, R., Mudianta, I. W., Setiawan, E., Widyawaruyanti, A., Nuengchamnong, N., Suphrom, N., & Suciati, S. (2023). Metabolite profile and in vitro cholinesterase inhibitory activity of extract and fractions of Aaptos suberitoides. Journal of Pharmacy and Pharmacognosy Research, 11(1), 129–136. https://doi.org/10.56499/jppres22.1511_11.1.129

Quévrain, E., Domart-Coulon, I., Pernice, M., & Bourguet-Kondracki, M. L. (2009). Novel natural parabens produced by a Microbulbifer bacterium in its calcareous sponge host Leuconia nivea. Environmental Microbiology, 11(6), 1527–1539. https://doi.org/10.1111/j.1462-2920.2009.01880.x

Ravichandran S, P. D. (2013). Antifungal Potential of Marine Sponge Extract against Plant and Fish Pathogenic Fungi. Oceanography: Open Access, 01(03). https://doi.org/10.4172/2332-2632.1000112

Resuello, D. L., Lirio, S. B., Porto, A. E., Macabeo, A. P. G., Huang, H. Y., Corpuz, M. J. A. T., & Villaflores, O. B. (2020). β-secretase 1 inhibitory activity and AMP-activated protein kinase activation of Callyspongia samarensis extracts. Natural Product Research, 34(4), 525–529. https://doi.org/10.1080/14786419.2018.1488699

Ribeiro, J., Araújo-Silva, H., Fernandes, M., da Silva, J. A., Pinto, F. das C. L., Pessoa, O. D. L., Santos, H. S., de Menezes, J. E. S. A., & Gomes, A. C. (2024). Petrosamine isolated from marine sponge Petrosia sp. demonstrates protection against neurotoxicity in vitro and in vivo. Natural Products and Bioprospecting, 14(1). https://doi.org/10.1007/s13659-024-00439-x

Rivai, B., & Umar, A. K. (2023). Neuroprotective compounds from marine invertebrates. In Beni-Suef University Journal of Basic and Applied Sciences (Vol. 12, Issue 1). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1186/s43088-023-00407-3

Rocha, J., Peixe, L., Gomes, N. C. M., & Calado, R. (2011). Cnidarians as a source of new marine bioactive compounds - An overview of the last decade and future steps for bioprospecting. In Marine Drugs (Vol. 9, Issue 10, pp. 1860–1886). MDPI AG. https://doi.org/10.3390/md9101860

Saad, M. H., El-Fakharany, E. M., Salem, M. S., & Sidkey, N. M. (2022). The use of cyanobacterial metabolites as natural medical and biotechnological tools: review article. Journal of Biomolecular Structure and Dynamics, 40(6), 2828–2850. https://doi.org/10.1080/07391102.2020.1838948

Sagar, S., Kaur, M., & Minneman, K. P. (2010a). Antiviral Lead Compounds from Marine Sponges. Marine Drugs, 8(10), 2619. https://doi.org/10.3390/MD8102619

Sagar, S., Kaur, M., & Minneman, K. P. (2010b). Antiviral lead compounds from marine sponges. In Marine Drugs (Vol. 8, Issue 10, pp. 2619–2638). MDPI AG. https://doi.org/10.3390/md8102619

Sagar, S., Kaur, M., Radovanovic, A., & Bajic, V. B. (2013). Dragon exploration system on marine sponge compounds interactions. Journal of Cheminformatics, 5(2). https://doi.org/10.1186/1758-2946-5-11

Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C. E., Cummings, J., & van der Flier, W. M. (2021a). Alzheimer’s disease. In The Lancet (Vol. 397, Issue 10284, pp. 1577–1590). Elsevier B.V. https://doi.org/10.1016/S0140-6736(20)32205-4

Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C. E., Cummings, J., & van der Flier, W. M. (2021b). Alzheimer’s disease. In The Lancet (Vol. 397, Issue 10284, pp. 1577–1590). Elsevier B.V. https://doi.org/10.1016/S0140-6736(20)32205-4

Shiels, K., Tsoupras, A., Lordan, R., Zabetakis, I., Murray, P., & Kumar Saha, S. (2022). Anti-inflammatory and antithrombotic properties of polar lipid extracts, rich in unsaturated fatty acids, from the Irish marine cyanobacterium Spirulina subsalsa. Journal of Functional Foods, 94. https://doi.org/10.1016/j.jff.2022.105124

Shim, K. H., Kang, M. J., Youn, Y. C., An, S. S. A., & Kim, S. Y. (2022). Alpha-synuclein: a pathological factor with Aβ and tau and biomarker in Alzheimer’s disease. In Alzheimer’s Research and Therapy (Vol. 14, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13195-022-01150-0

Shubina, L. K., Makarieva, T. N., Denisenko, V. A., Popov, R. S., Dyshlovoy, S. A., Grebnev, B. B., Dmitrenok, P. S., von Amsberg, G., & Stonik, V. A. (2020). Gracilosulfates A–G, Monosulfated polyoxygenated steroids from the marine sponge haliclona gracilis. Marine Drugs, 18(9). https://doi.org/10.3390/md18090454

Sirimangkalakitti, N., Olatunji, O. J., Changwichit, K., Saesong, T., Chamni, S., Chanvorachote, P., Ingkaninan, K., Plubrukarn, A., & Suwanborirux, K. (2015). Bromotyrosine Alkaloids with Acetylcholinesterase Inhibitory Activity from the Thai Sponge Acanthodendrilla sp. Natural Product Communications.

Souchet, B., Audrain, M., Billard, J. M., Dairou, J., Fol, R., Orefice, N. S., Tada, S., Gu, Y., Dufayet-Chaffaud, G., Limanton, E., Carreaux, F., Bazureau, J. P., Alves, S., Meijer, L., Janel, N., Braudeau, J., & Cartier, N. (2019). Inhibition of DYRK1A proteolysis modifies its kinase specificity and rescues Alzheimer phenotype in APP/PS1 mice. Acta Neuropathologica Communications, 7(1), 46. https://doi.org/10.1186/s40478-019-0678-6

Tommonaro, G., García-Font, N., Vitale, R. M., Pejin, B., Iodice, C., Cañadas, S., Marco-Contelles, J., & Oset-Gasque, M. J. (2016). Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer’s disease. European Journal of Medicinal Chemistry, 122, 326–338. https://doi.org/10.1016/j.ejmech.2016.06.036

Varijakzhan, D., Loh, J. Y., Yap, W. S., Yusoff, K., Seboussi, R., Lim, S. H. E., Lai, K. S., & Chong, C. M. (2021). Bioactive compounds from marine sponges: Fundamentals and applications. In Marine Drugs (Vol. 19, Issue 5). MDPI. https://doi.org/10.3390/md19050246

Weller, J., & Budson, A. (2018). Current understanding of Alzheimer’s disease diagnosis and treatment. In F1000Research (Vol. 7). F1000 Research Ltd. https://doi.org/10.12688/f1000research.14506.1

Yamashita, A., Tamaki, M., Kasai, H., Tanaka, T., Otoguro, T., Ryo, A., Maekawa, S., Enomoto, N., de Voogd, N. J., Tanaka, J., & Moriishi, K. (2017). Inhibitory effects of metachromin A on hepatitis B virus production via impairment of the viral promoter activity. Antiviral Research, 145, 136–145. https://doi.org/10.1016/J.ANTIVIRAL.2017.08.001

Zhao, J., Liu, F., Huang, C., Shentu, J., Wang, M., Sun, C., Chen, L., Yan, S., Fang, F., Wang, Y., Xu, S., Benjamin Naman, C., Wang, Q., He, S., & Cui, W. (2017). 5-hydroxycyclopenicillone inhibits β-amyloid oligomerization and produces anti-β-amyloid neuroprotective effects in vitro. Molecules, 22(10). https://doi.org/10.3390/molecules22101651




DOI: https://doi.org/10.23857/pc.v10i11.10644

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/