Avances en el uso de daptomicina para el tratamiento de infecciones asociadas a biofilms

Frank Alexander Casa Casa, Melanie Viviana Herrera Silva, Ariana Astrid Vintimilla Paucar, Cesar David Guerra Naranjo

Resumen


La daptomicina, un antibiótico lipopeptídico, es ampliamente utilizada para tratar infecciones graves causadas por bacterias grampositivas, incluidos el Staphylococcus aureus resistente a la meticilina (SARM) y los enterococos resistentes a la vancomicina. Su principal mecanismo de acción se basa en la alteración de las membranas bacterianas, lo que provoca la muerte celular, aunque aún se investigan aspectos específicos de este proceso. A pesar de su eficacia, la resistencia emergente plantea un desafío significativo, destacando la necesidad de enfoques terapéuticos alternativos. Investigaciones emergentes destacan posibles aplicaciones antiinflamatorias de la daptomicina, incluyendo su capacidad para suprimir citocinas inflamatorias, lo que abre oportunidades para su uso en enfermedades inflamatorias como la artritis reumatoide; Si bien la daptomicina sigue siendo una herramienta clave contra infecciones asociadas a biofilms, la resistencia emergente subraya la necesidad de estrategias combinadas e innovaciones terapéuticas que preserven su eficacia y amplíen sus aplicaciones clínicas. Estudios recientes sugieren que la combinación de daptomicina con bacteriófagos puede revertir la resistencia en cepas como el SARM, mejorando la eficacia clínica. Además, se exploran vías de administración alternativas, como la subcutánea, que ofrecen una opción viable en pacientes con acceso venoso limitado. Esta revisión tiene como objetivo analizar los avances en el uso de daptomicina, abordando su mecanismo de acción, la resistencia emergente y las estrategias terapéuticas combinadas.


Palabras clave


Daptomicina; Resistencia; Infección.

Texto completo:

PDF HTML

Referencias


Acosta, T. (n.d.). El acceso a medicamentos como parte del derecho a la salud en el Ecuador Universidad Andina Simón Bolívar El acceso a medicamentos como parte del derecho a la salud en el Ecuador. https://repositorio.uasb.edu.ec/bitstream/10644/8022/1/T3473-MDC-Acosta-El%20aceso.pdf

Antonello, R. M., Canetti, D., & Riccardi, N. (2022). Daptomycin synergistic properties from in vitro and in vivo studies: a systematic review. Journal of Antimicrobial Chemotherapy, 78(1), 52–77. https://doi.org/10.1093/jac/dkac346

Araos, R., García, P., Chanqueo, L., & Labarca, J. (2012). Daptomicina: características farmacológicas y aporte en el tratamiento de infecciones por cocáceas gram positivas. Revista Chilena de Infectología, 29(2), 127–131. https://doi.org/10.4067/s0716-10182012000200001

Barnawi, G., Noden, M., Goodyear, J., Marlyn, J., Schneider, O., Beriashvili, D., Schulz, S., Moreira, R., Palmer, M., & Taylor, S. D. (2022). Discovery of Highly Active Derivatives of Daptomycin by Assessing the Effect of Amino Acid Substitutions at Positions 8 and 11 on a Daptomycin Analogue. ACS Infectious Diseases, 8(4), 778–789. https://doi.org/10.1021/acsinfecdis.1c00483

Cave, K., & Gould, I. (2021). Daptomycin. Elsevier EBooks, 106–122. https://doi.org/10.1016/b978-0-12-820472-6.00138-9

Centers for Disease Control and Prevention. (2023). Antimicrobial resistance threats report 2023. CDC. https://www.cdc.gov/drugresistance/pdf/threats-report/2023-ar-threats-report-508.pdf

Chapin, R. W., McCoy, C., Donohoe, K., & Patel, D. (2023). 2793. Clinical Outcomes of Combination Therapy with Daptomycin and Ceftaroline for Treatment of Methicillin-Resistant Staphylococcus aureus Bloodstream Infection. Open Forum Infectious Diseases, 10(Supplement_2). https://doi.org/10.1093/ofid/ofad500.2404

Chu, S., Hu, W., Zhang, K., & Hui, F. (2022). Breeding of High Daptomycin-Producing Strain by Streptomycin Resistance Superposition. Polish Journal of Microbiology, 71(3), 463–471. https://doi.org/10.33073/pjm-2022-041

Coombs Lim, C., G. W., Daley, D. A., Princy Shoby, & Shakeel Mowlaboccus. (2024). Whole-genome sequencing identifies MprF mutations in a genetically diverse population of daptomycin non-susceptible Staphylococcus aureus in Australia. International Journal of Antimicrobial Agents, 63(5), 107144–107144. https://doi.org/10.1016/j.ijantimicag.2024.107144

Donlan, R. M., & Costerton, J. W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2), 167–193. https://doi.org/10.1128/CMR.15.2.167-193.2002

Dubois, B, A., Magnan, C., Lienard, A., Pouget, C., Bouchet, F., Marchandin, H., Larcher, R., Lavigne, J.-P., & Pantel, A. (2023). In Vivo-Acquired Resistance to Daptomycin during Methicillin-Resistant Staphylococcus aureus Bacteremia. Antibiotics, 12(12), 1647. https://doi.org/10.3390/antibiotics12121647

Food and Drug Administration. (2023). Cubicin (daptomycin) prescribing information. FDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/021572s050lbl.pdf

Kana, B. D. (2024). eLife assessment: Daptomycin forms a stable complex with phosphatidylglycerol for selective uptake to bacterial membrane. https://doi.org/10.7554/elife.93267.1.sa3

Kotsogianni, Wood, T. M., Alexander, F. M., Cochrane, S. A., & Martin, N. I. (2021). Binding Studies Reveal Phospholipid Specificity and Its Role in the Calcium-Dependent Mechanism of Action of Daptomycin. ACS Infectious Diseases, 7(9), 2612–2619. https://doi.org/10.1021/acsinfecdis.1c00316

Kullar, R., Sakoulas, G., Deresinski, S., & van Hal, S. J. (2022). When sepsis persists: a review of MRSA bacteraemia treatment failures and the potential role for combination therapy. Journal of Antimicrobial Chemotherapy, 77(3), 691–705. https://doi.org/10.1093/jac/dkab480

Lalani, T., Chu, V. H., Park, L. P., Cecchi, E., Corey, G. R., Durante-Mangoni, E., ... & Fowler, V. G. (2018). Daptomycin plus β-lactam combination therapy for methicillin-resistant Staphylococcus aureus bacteremia: A randomized clinical trial. Clinical Infectious Diseases, 66(2), 213–220. https://doi.org/10.1093/cid/cix756

Lebeaux, D., Ghigo, J. M., & Beloin, C. (2014). Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiology and Molecular Biology Reviews, 78(3), 510–543. https://doi.org/10.1128/MMBR.00013-14

Lozada, M. M. (2018). Comments of Clinical and Microbiological Experience with Daptomycin in Chronic Osteomyelitis Treatment. Cohesive Journal of Microbiology & Infectious Disease, 2(2). https://doi.org/10.31031/cjmi.2018.02.000535

Machhua Pragyansree, Vignesh Gopalakrishnan Unnithan, Liu, Y., Jiang, Y., Zhang, L., & Guo, Z. (2024). Daptomycin forms a stable complex with phosphatidylglycerol for selective uptake to bacterial membrane. BioRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.7554/elife.93267.2

Madison, C. L., Anja, Luedeke, C. E., Neeka Hajjafar, Srivastava, P., Berti, A. D., Bayer, A. S., & Razieh Kebriaei. (2024). It takes two to tango: Preserving daptomycin efficacy against daptomycin-resistant MRSA using daptomycin-phage co-therapy. Microbiology Spectrum. https://doi.org/10.1128/spectrum.00679-24

Ministerio de Salud Pública del Ecuador. (2023). Informe anual de vigilancia de resistencia antimicrobiana, 2023. Sistema Nacional de Vigilancia Epidemiológica (SNVE).https://www.salud.gob.ec/wp-content/uploads/2024/01/Informe-resistencia-antimicrobiana-2023.pdf

Mishra, A., Aggarwal, A., & Khan, F. (2024). Medical Device-Associated Infections Caused by Biofilm-Forming Microbial Pathogens and Controlling Strategies. Antibiotics, 13(7), 623–623. https://doi.org/10.3390/antibiotics13070623

Mishra, N. N., Lew, C., Abdelhady, W., Lapitan, C. K., Proctor, R. A., Rose, W. E., & Bayer, A. S. (2022). Synergy Mechanisms of Daptomycin-Fosfomycin Combinations in Daptomycin-Susceptible and -Resistant Methicillin-Resistant Staphylococcus aureus: In Vitro , Ex Vivo , and In Vivo Metrics. Antimicrobial Agents and Chemotherapy, 66(1). https://doi.org/10.1128/aac.01649-21

Moise, P. A., North, D., Steenbergen, J. N., & Sakoulas, G. (2020). Current options for the treatment of invasive methicillin-resistant Staphylococcus aureus infections in adults: A focus on daptomycin. Clinical Infectious Diseases, 71(Supplement_4), S274–S284. https://doi.org/10.1093/cid/ciaa624

Papachatzi, E., Despoina Gkentzi, Sotiris Tzifas, Dassios, T., & Dimitriou, G. (2024). Daptomycin Use for Persistent Coagulase-Negative Staphylococcal Bacteremia in a Neonatal Intensive Care Unit. Antibiotics, 13(3), 254–254. https://doi.org/10.3390/antibiotics13030254

Policarpo, S., Duro, R., Pereira, N. R., & Santos, L. (2024). Daptomycin and Ceftaroline Combination Therapy in Complicated Endovascular Infections Caused by Methicillin-Resistant Staphylococcus epidermidis. Cureus. https://doi.org/10.7759/cureus.54134

Sharma, M., Rawat, R., Pandey, E., Sharma, S., Sadhu, V., & Raghava Reddy Kakarla. (2024). Biofilm-associated Infections and Their Management. Royal Society of Chemistry EBooks, 53–73. https://doi.org/10.1039/bk9781837672813-00053

Shufang, L., Ye, Yang., Zhu, Jing. (2019). Application of daptomycin to preparation of medicines for treating rheumatoid arthritis.

Steenbergen, J. N., Alder, J., Thorne, G. M., & Tally, F. P. (2005). Daptomycin: A lipopeptide antibiotic for the treatment of serious Gram-positive infections. Journal of Antimicrobial Chemotherapy, 55(3), 283–288. https://doi.org/10.1093/jac/dki017

Taylor, S. D. (2024). Synthesis, Mechanism of Action and SAR Studies on the Cyclic Lipopeptide Antibiotic Daptomycin. Canadian Journal of Chemistry, 102(7), 414–424. https://doi.org/10.1139/cjc-2024-0040

Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G. (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3), 603–661. https://doi.org/10.1128/CMR.00134-14

USAID. (2008). Informe Anual de la Red de Monitoreo/ Vigilancia de la Resistencia a los Antibióticos. Retrieved January 22, 2025, from https://www.investigacionsalud.gob.ec/webs/ram/wp-content/uploads/2016/08/Informe_anual_2008.pdf

Valente, L. G., Federer, L., Iten, M., Grandgirard, D., Leib, S. L., Jakob, S. M., Matthias Haenggi, Cameron, D. R., Que, Y.-A., & Prazak, J. (2021). Searching for synergy: combining systemic daptomycin treatment with localised phage therapy for the treatment of experimental pneumonia due to MRSA. BMC Research Notes, 14(1). https://doi.org/10.1186/s13104-021-05796-1

Villavicencio, F., Granja, C., & Espinosa, C. (2021). Retos en la gestión de antimicrobianos de última línea en hospitales de Ecuador: enfoque en infecciones por Staphylococcus aureus resistente a meticilina. Revista Ecuatoriana de Infectología, 8(2), 91–98. https://doi.org/10.32719/26312483.2021.8.2.3

WHO GLASS. (2024). Global antimicrobial resistance and use surveillance system (GLASS) report 2024. World Health Organization. https://www.who.int/publications/i/item/9789240080302

Woods, R. J., Forstchen, M., Kinnear, C., McKaig, J., Patel, T., Tracy, K., Young, C., & Read, A. F. (2023). Rising daptomycin resistance inEnterococcus faeciumacross a hospital system occurred via rampant recurrent evolution and occasional transmission between patients. BioRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2023.05.09.540070

World Health Organization. (2024). WHO bacterial priority pathogens list for R&D of new antibiotics, 2024 update. WHO. https://www.who.int/publications/i/item/9789240081323

Xu, Y., Xiao, Y., Zhao, H., Wang, B., Yu, J., Shang, Y., Zhou, Y., Wu, X., Guo, Y., & Yu, F. (2024). Phenotypic and genetic characterization of daptomycin non-susceptible Staphylococcus aureus strains selected by adaptive laboratory evolution. Frontiers in Cellular and Infection Microbiology, 14. https://doi.org/10.3389/fcimb.2024.1453233

Ye, Y., Liang, Y., Huang, L., Cao, X., Xia, Z., & Liang, S. (2024). Daptomycin alleviates collagen-induced arthritis via suppressing inflammatory cytokines and NF-κB pathway. International Immunopharmacology, 144, 113648–113648. https://doi.org/10.1016/j.intimp.2024.113648

Zafer, M. M., Mohamed, G. A., Ibrahim, S. R. M., Ghosh, S., Bornman, C., & Elfaky, M. A. (2024). Biofilm-mediated infections by multidrug-resistant microbes: a comprehensive exploration and forward perspectives. Archives of Microbiology, 206(3). https://doi.org/10.1007/s00203-023-03826-z

Zhou, C., Luo, F., Lei, W., Chen, C., Zhang, Y., & Zhang, X. (2023). Exploring antimicrobial peptides as neuroprotective agents in neuroinflammatory and neurodegenerative diseases. Frontiers in Pharmacology, 14, 1154291. https://doi.org/10.3389/fphar.2023.1154291




DOI: https://doi.org/10.23857/pc.v10i8.10260

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/