Diseño de un brazo tipo pinza para clasificación de objetos con el uso de BrickLink Studio
Resumen
La robótica constituye una de las tecnologías más importantes a nivel mundial, evidenciada por la creciente aparición de nuevos prototipos robóticos tanto en entornos educativos como industriales. Son diseñados a través del uso de plataformas digitales que adquieren mayor relevancia por su capacidad de integrar conceptos de diseño mecánico, programación y automatización. En el presente trabajo se diseñó y modeló un brazo robótico tipo pinza con 374 piezas LEGO mediante el entorno virtual de Bricklink Studio. El desarrollo se fundamentó en procesos matemáticos como transformaciones homogéneas y definición de parámetros de Denavit-Hartenberg, los cuales establecen las condiciones cinemáticas y dinámicas del sistema. La investigación siguió una metodología aplicada con enfoque mixto y diseño pre-experimental. El proceso comprendió: revisión preliminar, selección de componentes, modelado modular digital, pruebas de funcionalidad, análisis de estabilidad estructural, refinamiento iterativo y documentación técnica. Como resultado, se obtuvo un diseño funcional de un brazo robótico definido por tres articulaciones y cuatro puntos de análisis para accionar una pinza mediante un actuador lineal. La estructura presenta 34 puntos críticos de tensión que identifican las áreas que requieren mayor atención en el modelo. El sistema destaca por su modularidad y precisión en el movimiento, construido con herramientas y elementos de bajo costo. Esta estructura constituye una base sólida para el aprendizaje del funcionamiento de diversos mecanismos que simulen o integren movimientos de articulaciones antropomórficas adaptativas, ampliando su potencial para aplicaciones en entornos industriales o educativos avanzados.
Palabras clave
Referencias
Abdelmaksoud, S. I., Al-Mola, M. H., Abro, G. E., y Asirvadam, V. S. (2024). In-depth review of advanced control strategies and cutting-edge trends in robot manipulators: analyzing the latest developments and techniques. IEEe Access, 12(s.n.), 47672-47701. https://doi.org/10.1109/ACCESS.2024.3383782
Ali, Z., Rasheed, K., Saad, S., Ammad, S., y Shahzad, L. (2025). Robotics and Automation: Tools and Technologies. En S. Saad, K. Rasheed, y S. Ammad, Applications of Digital Twins and Robotics in the Construction Sector (pp. 75-103). CRC Press.
Alshihabi, M., Ozkahraman, M., y Kayacan, M. Y. (9 de 2024). Enhancing the reliability of a robotic arm through lightweighting and vibration control with modal analysis and topology optimization. Mechanics Based Design of Structures and Machines, 53(3), 1950-1974. https://doi.org/10.1080/15397734.2024.2400207
Asif, S., y Webb, P. (2 de 2021). Kinematics Analysis of 6‐DoF Articulated Robot with Spherical Wrist. Mathematical Problems in Engineering, 2021(1), 6647035. https://doi.org/10.1155/2021/6647035
Ayazbay, A. A., Balabyev, G., Orazaliyeva, S., Gromaszek, K., y Zhauyt, A. (2024). Trajectory Planning, Kinematics, and Experimental Validation of a 3D-Printed Delta Robot Manipulator. International Journal of Mechanical Engineering and Robotics Research, 13(1), 113-126. https://doi.org/10.18178/ijmerr
Cardin-Catalan, D., Del Pobil, A. P., y Morales, A. (9 de 2019). Diseño de una nueva pinza robótica de resistencia variable usando dedos de partículas. En Comité Español de Automática, XL Jornadas de Automática: libro de actas (pp. 671-678). 10.17979/spudc.9788497497169.671 .
Cayetano-Jimenez, I. U., Martinez-Rios, E. A., Bustamante-Bello, R., Ramirez-Mendoza, R. A., y Ramirez-Montoya, M. S. (3 de 2024). Experimenting with soft robotics in education: A systematic literature review from 2006 to 2022. IEEE Transactions on Learning Technologies, 17(s.n.), 1249-1266. https://doi.org/10.1109/TLT.2024.3372894
Chen, M., Ren, W., y Jiang, Y. (2024). Robot Overview. echnologies of Robotic Welding. Singapore: Springer. https://doi.org/10.1007/978-981-97-3149-7_1
Cheng, M., Zhou, J., Qian, W., Wang, B., Zhao, C., y Han, P. (3 de 2024). Advanced electrical motors and control strategies for high-quality servo systems-a comprehensive review. Chinese Journal of Electrical Engineering, 10(1), 63-85. https://doi.org/10.23919/CJEE.2023.000048
Coelho, J., Brancalião, L., Alvarez, M., Costa, P., y Gonçalves, J. (7 de 2024). Prototyping and Control of an Educational Manipulator Robot. 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT) (pp. 1814-1819). Vallette, Malta: IEEE. https://doi.org/10.1109/CoDIT62066.2024.10708583
Dhatterwal, J. S., Kaswan, K. S., y Batra, R. (2024). Nature Inspired Robotics. CRC Press.
Dittli, J., Meyer, J. T., Gantenbein, J., Bützer, T., Ranzani, R., Linke, A., . . . Lambercy, O. (12 de 2023). Mixed methods usability evaluation of an assistive wearable robotic hand orthosis for people with spinal cord injury. Journal of NeuroEngineering and Rehabilitation, 20(1), 162. https://doi.org/10.1186/s12984-023-01284-8
Dorman, J. D., Kaur, G., y Rahim, M. (2024). Kinematic Modelling of a Three-Axis Articulated Robotic Arm. Congress on Control, Robotics, and Mechatronics. Singapore: Springer Nature. https://doi.org/10.1007/978-981-97-7094-6_25
Elghitany, M. N., Ahmed, A., Zaki, D., Behhit, D., Hosni, H., Nour, H., . . . Ahmed, M. I. (2024). Advancements in Design, Kinematics, and Control: A Comprehensive Review of Delta Robot Research. Advanced Sciences and Technology Journal, 1(2), 1-38. https://doi.org/10.21608/astj.2024.345254.1028
Häfner, P., Bergmann, V., Häfner, V., Michels, F. L., Grethler, M., y Karande, A. (2024). An Adaptive Learning Environment for Industry 4.0 Competencies Based on a Learning Factory and Its Immersive Digital Twin. CSEDU (pp. 720-731). SCITEPRESS. https://doi.org/10.5220/0012757000003693
Hegde, A. (2025). Robotics: Vision and Control Techniques. Educohack Press.
Hödl, O. (4 de 2024). An electronic engineering approach for turning a Lego brick piano into a musical instrument. IEEE Access, 12(s.n.), 51319 - 51329. https://doi.org/10.1109/ACCESS.2024.3386361
Hyde, R., y Filippidis, F. (2021). Design Studio Vol. 2: Intelligent Control: Disruptive Technologies. Routledge. https://doi.org/10.4324/9781003212751
Jin, T., y Han, X. (6 de 2024). Robotic arms in precision agriculture: A comprehensive review of the technologies, applications, challenges, and future prospects. Computers and Electronics in Agriculture, 221(s.n.), 108938. https://doi.org/10.1016/j.compag.2024.108938
Khatib, O. (2019). The Age of Human-Robot Collaboration. Stanford University Press.
Koycheva, L. (2024). Anthropology is Good to Build With: From Ethnographic Imagination to Anthropological Speculation in Robotics. En M. Artz, y L. Koycheva, EmTech Anthropology (pp. 107-129). Routledge.
Lu, H., Yang, Z., Zhu, D., Deng, F., y Guo, S. (7 de 2024). Dynamics Modeling and Parameter Identification for a Coupled-Drive Dual-Arm Nursing Robot. Chinese Journal of Mechanical Engineering, 37(1), 74. https://doi.org/10.1186/s10033-024-01063-z
Martínez, A. G., Perez, A. J., Moreno, E. C., Quiroga, L. A., y Onofre, D. M. (12 de 2022). Diseño de gripper para robot Fanuc LR Mate 200 ID, aplicando el Método de Optimización Topológica. Científica, 26(2), 1-14. https://doi.org/10.46842/ipn.cien.v26n2a08
Mathi, S. C., Surat, D. A., y Nithya, M. (2024). Solar-Powered Rover with a Three-Axis Robotic Arm for Image-based Targeted Pesticide Spraying. 2024 2nd International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS). Erode, India: IEEE. https://doi.org/10.1109/ICSSAS64001.2024.10760853
Pistone, A., Ludovico, D., Dal Verme, L. D., Leggieri, S., Canali, C., y Caldwell, D. G. (2024). Modelling and control of manipulators for inspection and maintenance in challenging environments: A literature review. Annual Reviews in Control, 57(s.n.), 100949. https://doi.org/10.1016/j.arcontrol.2024.100949
Rahman, M. M., Khatun, F., Jahan, I., Devnath, R., y Bhuiyan, M. A. (8 de 2024). Cobotics: The Evolving Roles and Prospects of Next‐Generation Collaborative Robots in Industry 5.0. Journal of Robotics, 2024(1), 2918089. https://doi.org/10.1155/2024/2918089
Rericha, T., Vacha, M., Steiner, F., y Tupa, J. (10 de 2024). Application of Education Models for the Concept of Industry 4.0. 2024 International Conference on Diagnostics in Electrical Engineering (Diagnostika) (pp. 1-5). Pilsen, Czech Republic: IEEE. https://doi.org/10.1109/Diagnostika61830.2024.10693890
Restrepo-Carmona, J. A., Taborda, E. A., Paniagua-García, E., Escobar, C. A., Sierra-Pérez, J., y Vásquez, R. E. (9 de 2024). On the Integration of Complex Systems Engineering and Industry 4.0 Technologies for the Conceptual Design of Robotic Systems. Machines, 12(9), 625. https://doi.org/10.3390/machines12090625
Sanchez-Bautista, J. A., Antelis, J. M., y Mendoza-Montoya, O. (3 de 2025). Early Detection Via EEG Signals of Self-Initiated Reaching and Grasping Movements Performed With The Subject’s Selected Upper Extremity. IEEE Access, 13(s.n.), 52607 - 52620. https://doi.org/10.1109/ACCESS.2025.3553554
Shastri, S. (2025). Robotic Mechanical Systems Fundamentals. Educohack Press.
Singh, R., Agrawal, A., Mishra, A., Arya, P. K., y Sharma, A. (2024). Application of Deep Learning Model for Analysis of Forward Kinematics of a 6-Axis Robotic Hand for a Humanoid. 2024 3rd International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS). Bristol, United Kingdom: IEEE. https://doi.org/10.1109/AIARS63200.2024.00006
Strathearn, C., y Ma, E. M. (2 de 2021). A novel speech to mouth articulation system for realistic humanoid robots. Journal of intelligent & robotic systems, 101(3), 54. https://doi.org/10.1007/s10846-021-01332-2
Tay, S. H., Choong, W. H., y Yoong, H. P. (2022). A review of SCARA robot control system. IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET). Kota Kinabalu, Malaysia: IEEE. https://doi.org/10.1109/IICAIET55139.2022.9936755
Tselegkaridis, S., y Sapounidis, T. (2021). Simulators in educational robotics: A review. Education Sciences, 11(1), 1-12. https://doi.org/10.3390/educsci11010011
Vallaro, M. F. (2024). Markerless Motion Capture for Dual-Handed Teleportation of Industrial Robots. University of Rhode Island.
Wang, B., Tao, F., Fang, X., Liu, C., Liu, Y., y Freiheit, T. (2021). Smart manufacturing and intelligent manufacturing: A comparative review. . Engineering, 7(6), 738-757. https://doi.org/10.1016/j.eng.2020.07.017
Wang, Z., y Jin, Z. (2024). Motion Optimization of a Six-Degree-of-Freedom Robotic Arm Based on Denavit-Hartenberg Parameter Method and NSGA-II. 2024 IEEE 2nd International Conference on Electrical, Automation and Computer Engineering (ICEACE). Changchun, China: IEEE. https://doi.org/10.1109/ICEACE63551.2024.10898211
Wendt, T. M., y Weeber, T. (2024). Feasibility exploration for a robust and reliable wireless connection for AI-generatively designed, additively manufactured articulated robotic arms. 2024 Wireless Telecommunications Symposium (WTS). Oakland, CA, USA: IEEE. https://doi.org/10.1109/WTS60164.2024.10536685
Yunatatak, R., Jaenudin, J., Hakim, L., y Ma’a, M. (2024). Painting robot with three axis motion. JTTM: Jurnal Terapan Teknik Mesin, 5(1), 113-127. https://doi.org/10.37373/jttm.v5i1.858
Zeng, C., Zhou, H., Ye, W., y Gu, X. (4 de 2022). iArm: design an educational robotic arm kit for inspiring students’ computational thinking. Sensors, 22(8), 2957. https://doi.org/10.3390/s22082957
Zou, Q., Shi, Y., Zhang, S., Zhang, H., Li, L., Huang, G., y Zhang, D. (1 de 2025). Design and Performance Analysis of a Novel Group of Translational Parallel Robots for a Three-Axis Grinding Machine. Electronics, 14(3), 427. https://doi.org/10.3390/electronics14030427
DOI: https://doi.org/10.23857/pc.v10i7.10059
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/