Machine learning-based fault type identification using random forests

Alex Ricardo Guamán Andrade, Jorge Rigoberto López Ortega, Hernán Patricio Moyano Ayala, José Luis Guamán Andrade

Resumen


This manuscript presents an advanced framework for fault classification in electrical distribution networks, using Random Forest (RF)-based methodologies coupled with simulation-generated datasets. A 6-node IEEE test setup was modeled in MATLAB Simulink to emulate different fault types under diverse operating conditions. Electrical metrics were systematically recorded, and from each experimental scenario, statistical features—mainly root mean square (RMS) values—were extracted to construct a structured dataset. The RF classifier was trained with labeled data and rigorously evaluated using stratified cross-validation techniques. An overall accuracy of 86% was achieved across seven distinct fault classes, showing remarkable precision and recall values for most fault types, especially A-G, AB, AC, B-G, and C-G. Despite relatively low effectiveness in differentiating ABC and BC faults, the model demonstrated considerable generalization capabilities when applied to an external test case with an AB fault, which was correctly classified despite not being present in the training set. The results support the effectiveness of the proposed methodology for scalable, data-driven fault diagnosis within distribution networks. The integration of simulation-based data generation with ensemble learning techniques constitutes a robust strategy for facilitating real-time network monitoring and adaptive protection mechanisms. Future research will focus on expanding the feature space, improving symmetric fault classification, and incorporating the framework into edge computing architectures for real-time deployment.


Palabras clave


Electrical fault classification; Random Forest; smart protection; fault diagnosis.

Texto completo:

PDF HTML

Referencias


Hu, J., Hu, W., Chen, J., Cao, D., Zhang, Z., Li, Z., Chen, Z., & Blaabjerg, F. (2023). Fault Location and Classification for Distribution Systems Based on Deep Graph Learning Methods. Journal of Modern Power Systems and Clean Energy. https://doi.org/10.35833/mpce.2022.000204

Li, C., Rakhra, P., Norman, P., Niewczas, P., Burt, G., & Clarkson, P. (2020). Modulated Low Fault-Energy Protection Scheme for DC Smart Grids. IEEE Transactions on Smart Grid. https://doi.org/10.1109/TSG.2019.2917540

Kaplan, H., Tehrani, K., & Jamshidi, M. (2021, August 1). Fault Diagnosis of Smart Grids Based on Deep Learning Approach. World Automation Congress. https://doi.org/10.23919/WAC50355.2021.9559474

Ajagekar, A., & You, F. (2021).Fault Diagnosis of Electrical Power Systems with Hybrid Quantum-Classical Deep Learning. https://doi.org/10.1016/B978-0-323-88506-5.50181-9

Ren, C. X., Hulbert, C., Johnson, P. A., & Rouet-Leduc, B. (2020).Machine learning and fault rupture: A review. https://doi.org/10.1016/BS.AGPH.2020.08.003

Khan, Z., Khan, Z., Gul, A., Gul, A., Perperoglou, A., Miftahuddin, M., Miftahuddin, M., Mahmoud, O., Mahmoud, O., Mahmoud, O., Adler, W., & Lausen, B. (2020). Ensemble of optimal trees, random forest and random projection ensemble classification. Advanced Data Analysis and Classification. https://doi.org/10.1007/S11634-019-00364-9

Firdausi, M., & Ahmad, S. (2022). Concise convolutional neural network model for fault detection. Communications in Science and Technology. https://doi.org/10.21924/cst.7.1.2022.746

Wang, X., Jiang, L., & Chakrabarty, K. (2020, April 5). LSTM-based Analysis of Temporally- and Spatially-Correlated Signatures for Intermittent Fault Detection.VLSI Test Symposium. https://doi.org/10.1109/VTS48691.2020.9107600

Moradi, M., Oakes, B. J., & Denil, J. (2020, September 15). Machine Learning-assisted Fault Injection. International Conference on Computer Safety, Reliability, and Security.

Fan, J., Wang, W., & Zhang, H. (2017, July 24). AutoEncoder based high-dimensional data fault detection system. International Conference on Industrial Informatics. https://doi.org/10.1109/INDIN.2017.8104910

Mohana, R. M., Reddy, C. K. K., Anisha, P. R., & Murthy, B. V. R. (2021). Random forest algorithms for the classification of tree-based ensemble. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2021.01.788

Mrabet, Z., Sugunaraj, N., Ranganathan, P., & Abhyankar, S. (2022). Random Forest Regressor-Based Approach for Detecting Fault Location and Duration in Power Systems. Sensors. https://doi.org/10.3390/s22020458

Nakahara, H., Jinguji, A., Sato, S., & Sasao, T. (2017, May 1). A Random Forest Using a Multi-valued Decision Diagram on an FPGA. International Symposium on Multiple-Valued Logic. https://doi.org/10.1109/ISMVL.2017.40

Han, J., Miao, S., Li, Y., Yang, W., & Yin, H. (2021). Faulted-Phase classification for transmission lines using gradient similarity visualization and cross-domain adaption-based convolutional neural network. Electric Power Systems Research. https://doi.org/10.1016/J.EPSR.2020.106876

Alsharif, M. H., Younes, M. K., & Kim, J. (2019). Time Series ARIMA Model for Prediction of Daily and Monthly Average Global Solar Radiation: The Case Study of Seoul, South Korea. Symmetry. https://doi.org/10.3390/SYM11020240




DOI: https://doi.org/10.23857/pc.v10i6.9853

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/