Machine learning-based fault type identification using random forests
Resumen
This manuscript presents an advanced framework for fault classification in electrical distribution networks, using Random Forest (RF)-based methodologies coupled with simulation-generated datasets. A 6-node IEEE test setup was modeled in MATLAB Simulink to emulate different fault types under diverse operating conditions. Electrical metrics were systematically recorded, and from each experimental scenario, statistical features—mainly root mean square (RMS) values—were extracted to construct a structured dataset. The RF classifier was trained with labeled data and rigorously evaluated using stratified cross-validation techniques. An overall accuracy of 86% was achieved across seven distinct fault classes, showing remarkable precision and recall values for most fault types, especially A-G, AB, AC, B-G, and C-G. Despite relatively low effectiveness in differentiating ABC and BC faults, the model demonstrated considerable generalization capabilities when applied to an external test case with an AB fault, which was correctly classified despite not being present in the training set. The results support the effectiveness of the proposed methodology for scalable, data-driven fault diagnosis within distribution networks. The integration of simulation-based data generation with ensemble learning techniques constitutes a robust strategy for facilitating real-time network monitoring and adaptive protection mechanisms. Future research will focus on expanding the feature space, improving symmetric fault classification, and incorporating the framework into edge computing architectures for real-time deployment.
Palabras clave
Referencias
Hu, J., Hu, W., Chen, J., Cao, D., Zhang, Z., Li, Z., Chen, Z., & Blaabjerg, F. (2023). Fault Location and Classification for Distribution Systems Based on Deep Graph Learning Methods. Journal of Modern Power Systems and Clean Energy. https://doi.org/10.35833/mpce.2022.000204
Li, C., Rakhra, P., Norman, P., Niewczas, P., Burt, G., & Clarkson, P. (2020). Modulated Low Fault-Energy Protection Scheme for DC Smart Grids. IEEE Transactions on Smart Grid. https://doi.org/10.1109/TSG.2019.2917540
Kaplan, H., Tehrani, K., & Jamshidi, M. (2021, August 1). Fault Diagnosis of Smart Grids Based on Deep Learning Approach. World Automation Congress. https://doi.org/10.23919/WAC50355.2021.9559474
Ajagekar, A., & You, F. (2021).Fault Diagnosis of Electrical Power Systems with Hybrid Quantum-Classical Deep Learning. https://doi.org/10.1016/B978-0-323-88506-5.50181-9
Ren, C. X., Hulbert, C., Johnson, P. A., & Rouet-Leduc, B. (2020).Machine learning and fault rupture: A review. https://doi.org/10.1016/BS.AGPH.2020.08.003
Khan, Z., Khan, Z., Gul, A., Gul, A., Perperoglou, A., Miftahuddin, M., Miftahuddin, M., Mahmoud, O., Mahmoud, O., Mahmoud, O., Adler, W., & Lausen, B. (2020). Ensemble of optimal trees, random forest and random projection ensemble classification. Advanced Data Analysis and Classification. https://doi.org/10.1007/S11634-019-00364-9
Firdausi, M., & Ahmad, S. (2022). Concise convolutional neural network model for fault detection. Communications in Science and Technology. https://doi.org/10.21924/cst.7.1.2022.746
Wang, X., Jiang, L., & Chakrabarty, K. (2020, April 5). LSTM-based Analysis of Temporally- and Spatially-Correlated Signatures for Intermittent Fault Detection.VLSI Test Symposium. https://doi.org/10.1109/VTS48691.2020.9107600
Moradi, M., Oakes, B. J., & Denil, J. (2020, September 15). Machine Learning-assisted Fault Injection. International Conference on Computer Safety, Reliability, and Security.
Fan, J., Wang, W., & Zhang, H. (2017, July 24). AutoEncoder based high-dimensional data fault detection system. International Conference on Industrial Informatics. https://doi.org/10.1109/INDIN.2017.8104910
Mohana, R. M., Reddy, C. K. K., Anisha, P. R., & Murthy, B. V. R. (2021). Random forest algorithms for the classification of tree-based ensemble. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2021.01.788
Mrabet, Z., Sugunaraj, N., Ranganathan, P., & Abhyankar, S. (2022). Random Forest Regressor-Based Approach for Detecting Fault Location and Duration in Power Systems. Sensors. https://doi.org/10.3390/s22020458
Nakahara, H., Jinguji, A., Sato, S., & Sasao, T. (2017, May 1). A Random Forest Using a Multi-valued Decision Diagram on an FPGA. International Symposium on Multiple-Valued Logic. https://doi.org/10.1109/ISMVL.2017.40
Han, J., Miao, S., Li, Y., Yang, W., & Yin, H. (2021). Faulted-Phase classification for transmission lines using gradient similarity visualization and cross-domain adaption-based convolutional neural network. Electric Power Systems Research. https://doi.org/10.1016/J.EPSR.2020.106876
Alsharif, M. H., Younes, M. K., & Kim, J. (2019). Time Series ARIMA Model for Prediction of Daily and Monthly Average Global Solar Radiation: The Case Study of Seoul, South Korea. Symmetry. https://doi.org/10.3390/SYM11020240
DOI: https://doi.org/10.23857/pc.v10i6.9853
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/