Estudio de la transferencia de calor en energías renovables: Optimización de paneles solares térmicos y sistemas geotérmicos
Resumen
La presente investigación analiza los procesos de transferencia de calor en tecnologías de energía renovable térmica, focalizándose en la eficiencia y optimización de paneles solares térmicos y sistemas geotérmicos. A través de una revisión sistemática de la literatura científica entre 2021 y 2025, se identificaron mecanismos clave de conducción, convección y radiación, así como sus interacciones en entornos operativos reales. Se destacan avances en el uso de nanofluidos, materiales de cambio de fase y técnicas de simulación térmica que mejoran la eficiencia energética. Asimismo, se examinan configuraciones estructurales, propiedades del terreno e innovaciones en acoplamientos híbridos solar-geotérmicos. Los resultados revelan que los sistemas integrados maximizan el aprovechamiento térmico, reducen pérdidas energéticas y mejoran la sostenibilidad operativa. Se concluye que el diseño optimizado, sustentado en modelos computacionales avanzados y análisis exergéticos, permite desarrollar soluciones energéticas resilientes, sostenibles y adaptables a diversos contextos climáticos y geográficos.
Palabras clave
Referencias
Akdas, S. B., & Onur, M. (2022). Analytical solutions for predicting and optimizing geothermal energy extraction from an enhanced geothermal system with a multiple hydraulically fractured horizontal-well doublet. Renewable Energy, 181, 567-580. https://www.sciencedirect.com/science/article/pii/S0960148121013495
Asadi, R., Assareh, E., Moltames, R., Olazar, M., Nedaei, M., & Parvaz, F. (2022). Optimisation of combined cooling, heating and power (CCHP) systems incorporating the solar and geothermal energy: a review study. International Journal of Ambient Energy, 43(1), 42-60. https://www.tandfonline.com/doi/abs/10.1080/01430750.2019.1630299
Assad, M., & Rosen, M. A. (Eds.). (2021). Design and performance optimization of renewable energy systems. Academic press. https://books.google.es/books?hl=es&lr=&id=ODoEEAAAQBAJ&oi=fnd&pg=PP1&dq=Study+of+Heat+Transfer+in+Renewable+Energy:+Optimization+of+Solar+Thermal+Panels+and+Geothermal+Systems&ots=hSLzk8_VOL&sig=DkR_LBLR9OQWtAbbHpGFoUajEh0
Assareh, E., Assareh, M., Alirahmi, S. M., Jalilinasrabady, S., Dejdar, A., & Izadi, M. (2021). An extensive thermo-economic evaluation and optimization of an integrated system empowered by solar-wind-ocean energy converter for electricity generation–Case study: Bandar Abas, Iran. Thermal Science and Engineering Progress, 25, 100965. https://www.sciencedirect.com/science/article/pii/S245190492100127X
Assareh, E., Hoseinzadeh, S., Agarwal, N., Delpisheh, M., Dezhdar, A., Feyzi, M., ... & Lee, M. (2023). A transient simulation for a novel solar-geothermal cogeneration system with a selection of heat transfer fluids using thermodynamics analysis and ANN intelligent (AI) modeling. Applied Thermal Engineering, 231, 120698. https://www.sciencedirect.com/science/article/pii/S1359431123007275
Behera, U. S., Sangwai, J. S., & Byun, H. S. (2025). A comprehensive review on the recent advances in applications of nanofluids for effective utilization of renewable energy. Renewable and Sustainable Energy Reviews, 207, 114901. https://www.sciencedirect.com/science/article/pii/S1364032124006270
Benzaama, M. H., Menhoudj, S., Lekhal, M. C., Mokhtari, A., & Attia, S. (2021). Multi-objective optimisation of a seasonal solar thermal energy storage system combined with an earth–Air heat exchanger for net zero energy building. Solar energy, 220, 901-913. https://www.sciencedirect.com/science/article/pii/S0038092X21002644
Boukelia, T. E., Arslan, O. Ğ. U. Z., & Bouraoui, A. (2021). Thermodynamic performance assessment of a new solar tower-geothermal combined power plant compared to the conventional solar tower power plant. Energy, 232, 121109. https://www.sciencedirect.com/science/article/pii/S0360544221013578
Dokmak, H., Faraj, K., Faraj, J., Castelain, C., & Khaled, M. (2024). Geothermal systems classification, coupling, and hybridization: A recent comprehensive review. Energy and Built Environment. https://www.sciencedirect.com/science/article/pii/S2666123324000345
Eisapour, A. H., Rad, F. M., & Fung, A. S. (2024). Techno-economic and environmental study of a hybrid solar ground source heat pumps for a heating-dominated community in a cold climate; a case study in Toronto. Renewable Energy, 231, 120874. https://www.sciencedirect.com/science/article/pii/S096014812400942X
Farajollahi, A., Baharvand, M., & Takleh, H. R. (2024). Modeling and optimization of hybrid geothermal-solar energy plant using coupled artificial neural network and genetic algorithm. Process Safety and Environmental Protection, 186, 348-360. https://www.sciencedirect.com/science/article/pii/S0957582024003537
Forghani, A. H., Solghar, A. A., & Hajabdollahi, H. (2024). Optimal design of a multi-generation system based on solar and geothermal energy integrated with multi-effect distillatory. Applied Thermal Engineering, 236, 121381. https://www.sciencedirect.com/science/article/pii/S1359431123014102
Ghiasi, M., Wang, Z., Mehrandezh, M., & Paranjape, R. (2025). Enhancing efficiency through integration of geothermal and photovoltaic in heating systems of a greenhouse for sustainable agriculture. Sustainable Cities and Society, 118, 106040. https://www.sciencedirect.com/science/article/pii/S221067072400862X
Gondal, I. A. (2021). Prospects of Shallow geothermal systems in HVAC for NZEB. Energy and Built Environment, 2(4), 425-435. https://www.sciencedirect.com/science/article/pii/S2666123320300957
Hai, T., Ali, M. A., Chaturvedi, R., Almojil, S. F., Almohana, A. I., Alali, A. F., ... & Shamseldin, M. A. (2023). A low-temperature driven organic Rankine cycle for waste heat recovery from a geothermal driven Kalina cycle: 4E analysis and optimization based on artificial intelligence. Sustainable Energy Technologies and Assessments, 55, 102895. https://www.sciencedirect.com/science/article/pii/S2213138822009432
Hemmatabady, H., Welsch, B., Formhals, J., & Sass, I. (2022). AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling. Applied Energy, 311, 118652. https://www.sciencedirect.com/science/article/pii/S0306261922001209
Hou, G., Xu, L., Liu, Z., Chen, D., Ru, H., & Taherian, H. (2023). Solar-assisted geothermal heat pump systems: current practice and future development. In Renewable energy production and distribution (pp. 217-246). Academic Press. https://www.sciencedirect.com/science/article/pii/B9780443184390000136
Hu, S., Yang, Z., Li, J., & Duan, Y. (2022). Optimal solar thermal retrofit for geothermal power systems considering the lifetime brine degradation. Renewable Energy, 186, 628-645. https://www.sciencedirect.com/science/article/pii/S0960148122000295
Jafari, R. (2021). Optimization and energy analysis of a novel geothermal heat exchanger for photovoltaic panel cooling. Solar Energy, 226, 122-133. https://www.sciencedirect.com/science/article/pii/S0038092X21007039
Kamazani, M. A., & Aghanajafi, C. (2022). Multi-objective optimization and exergoeconomic evaluation of a hybrid geothermal-PVT system integrated with PCM. Energy, 240, 122806. https://www.sciencedirect.com/science/article/pii/S0360544221030553
Kim, Y. J., Entchev, E., Na, S. I., Kang, E. C., Baik, Y. J., & Lee, E. J. (2023). Investigation of system optimization and control logic on a solar geothermal hybrid heat pump system based on integral effect test data. Energy, 284, 129308. https://www.sciencedirect.com/science/article/pii/S0360544223027020
Kumar, A., Singh, V. P., Meena, C. S., & Dutt, N. (Eds.). (2023). Thermal energy systems: Design, computational techniques, and applications. CRC Press. https://books.google.es/books?hl=es&lr=&id=Ydu-EAAAQBAJ&oi=fnd&pg=PR9&dq=Study+of+Heat+Transfer+in+Renewable+Energy:+Optimization+of+Solar+Thermal+Panels+and+Geothermal+Systems&ots=CBq4NMJthp&sig=KzDOzCcDMytsIanR3OL0vAERupU
Kundu, A. (2025). Application of Geothermal Energy‐Based Earth‐Air Heat Exchanger in Sustainable Buildings. Heat Transfer Enhancement Techniques: Thermal Performance, Optimization and Applications, 221-232. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781394270996.ch9
Lapertot, A., Cuny, M., Kadoch, B., & Le Métayer, O. (2021). Optimization of an earth-air heat exchanger combined with a heat recovery ventilation for residential building needs. Energy and Buildings, 235, 110702. https://www.sciencedirect.com/science/article/pii/S0378778820334885
López-Pascual, D., Valiente-Blanco, I., Fernandez-Munoz, M., & Diez-Jimenez, E. (2023). Theoretical modelling and optimization of a geothermal cooling system for solar photovoltaics. Renewable Energy, 206, 357-366. https://www.sciencedirect.com/science/article/pii/S0960148123001064
Mohammadi, M., Mahmoudan, A., Nojedehi, P., Hoseinzadeh, S., Fathali, M., & Garcia, D. A. (2023). Thermo-economic assessment and optimization of a multigeneration system powered by geothermal and solar energy. Applied Thermal Engineering, 230, 120656. https://www.sciencedirect.com/science/article/pii/S1359431123006853
Noorollahi, Y., Pakzadmanesh, M., Kashani, A., Pouyaei, A., Yousefi, F., Roumi, S., & Jalilinasrabady, S. (2023). Reliable renewable power production by modeling of geothermal assisted solar chimney power plant. Geothermics, 111, 102701. https://www.sciencedirect.com/science/article/pii/S037565052300055X
Omeiza, L. A., Abid, M., Subramanian, Y., Dhanasekaran, A., Bakar, S. A., & Azad, A. K. (2023). Challenges, limitations, and applications of nanofluids in solar thermal collectors—a comprehensive review. Environmental Science and Pollution Research, 1-29. https://link.springer.com/article/10.1007/s11356-023-30656-9
Parvaz, M., Mohammadi, H., & Assareh, E. (2023). Effect of different operation strategies on transient solar thermal power plant simulation models with molten salt as heat transfer fluid–Considering 5 cities under different climate zones–Dubai and Iran. Thermal Science and Engineering Progress, 38, 101654. https://www.sciencedirect.com/science/article/pii/S2451904923000070
Patel, A. (2023). Enhancing heat transfer efficiency in solar thermal systems using advanced heat exchangers. Multidisciplinary International Journal of Research and Development (MIJRD), 2(06), 31-51. https://www.mijrd.com/papers/v2/i6/MIJRDV2I60003.pdf
Pelella, F., Zsembinszki, G., Viscito, L., Mauro, A. W., & Cabeza, L. F. (2023). Thermo-economic optimization of a multi-source (air/sun/ground) residential heat pump with a water/PCM thermal storage. Applied Energy, 331, 120398. https://www.sciencedirect.com/science/article/pii/S0306261922016555
Pikra, G., Darmanto, P. S., & Astina, I. M. (2024). A review of solar chimney-earth air heat exchanger (SCEAHE) system integration for thermal comfort building. Journal of Building Engineering, 111484. https://www.sciencedirect.com/science/article/pii/S2352710224030523
Pilou, M., Kosmadakis, G., Meramveliotakis, G., & Krikas, A. (2022). Towards a 100% renewable energy share for heating and cooling in office buildings with solar and geothermal energy. Solar Energy Advances, 2, 100020. https://www.sciencedirect.com/science/article/pii/S2667113122000080
Ragab, K. M., & Orhan, M. F. (2024). Evaluating conventional and renewable energy systems for green buildings: A case study on energy efficiency and cost optimization. Case Studies in Thermal Engineering, 63, 105233. https://www.sciencedirect.com/science/article/pii/S2214157X24012644
Rahman, A., Abas, N., Dilshad, S., & Saleem, M. S. (2021). A case study of thermal analysis of a solar assisted absorption air-conditioning system using R-410A for domestic applications. Case Studies in Thermal Engineering, 26, 101008. https://www.sciencedirect.com/science/article/pii/S2214157X21001714
Rana, M., Nuhash, M. M., & Bhuiyan, A. A. (2024). A CFD modelling for optimizing geometry parameters for improved performance using clean energy geothermal ground-to-air tunnel heat exchangers. Case Studies in Thermal Engineering, 53, 103867. https://www.sciencedirect.com/science/article/pii/S2214157X23011735
Ren, F., Wei, Z., & Zhai, X. (2022). A review on the integration and optimization of distributed energy systems. Renewable and Sustainable Energy Reviews, 162, 112440. https://www.sciencedirect.com/science/article/pii/S136403212200346X
Shoaei, M., Hajinezhad, A., & Moosavian, S. F. (2023). Design, energy, exergy, economy, and environment (4E) analysis, and multi-objective optimization of a novel integrated energy system based on solar and geothermal resources. Energy, 280, 128162. https://www.sciencedirect.com/science/article/pii/S0360544223015566
Singh, A. K., & Kumar, R. (2025). Enhancing renewable energy systems using loop heat pipes: A case research on solar thermal applications. Applied Thermal Engineering, 126866. https://www.sciencedirect.com/science/article/pii/S1359431125014589
Smaisim, G. F., Abed, A. M., & Shamel, A. (2023). Investigation and optimization of solar collector and geothermal pump hybrid system for cogeneration of heat and power with exergy-economic approach. Clean Energy, 7(3), 571-581. https://academic.oup.com/ce/article-abstract/7/3/571/7175983
Tafavogh, M., & Zahedi, A. (2021). Design and production of a novel encapsulated nano phase change materials to improve thermal efficiency of a quintuple renewable geothermal/hydro/biomass/solar/wind hybrid system. Renewable Energy, 169, 358-378. https://www.sciencedirect.com/science/article/pii/S0960148120320589
Tao, H., Zhou, J., & Musharavati, F. (2023). Techno-economic examination and optimization of a combined solar power and heating plant to achieve a clean energy conversion plant. Process Safety and Environmental Protection, 174, 223-234. https://www.sciencedirect.com/science/article/pii/S0957582023002860
Verma, V., Thangavel, S., Dutt, N., Kumar, A., & Weerasinghe, R. (Eds.). (2024). Highly Efficient Thermal Renewable Energy Systems: Design, Optimization and Applications. CRC Press. https://books.google.es/books?hl=es&lr=&id=TqUIEQAAQBAJ&oi=fnd&pg=PP1&dq=Study+of+Heat+Transfer+in+Renewable+Energy:+Optimization+of+Solar+Thermal+Panels+and+Geothermal+Systems&ots=9lYFiuExbf&sig=WLXO4ndqythwBCEu0fLQ56wiiIs
Wang, F., & You, T. (2023). Synergetic performance improvement of a novel building integrated photovoltaic/thermal-energy pile system for co-utilization of solar and shallow-geothermal energy. Energy Conversion and Management, 288, 117116. https://www.sciencedirect.com/science/article/pii/S0196890423004624
Yilmaz, C., & Sen, O. (2022). Thermoeconomic analysis and artificial neural network based genetic algorithm optimization of geothermal and solar energy assisted hydrogen and power generation. International Journal of Hydrogen Energy, 47(37), 16424-16439. https://www.sciencedirect.com/science/article/pii/S0360319922012009
Yilmaz, C., & Koyuncu, I. (2021). Thermoeconomic modeling and artificial neural network optimization of Afyon geothermal power plant. Renewable Energy, 163, 1166-1181. https://www.sciencedirect.com/science/article/pii/S0960148120314324
DOI: https://doi.org/10.23857/pc.v10i6.9678
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/