Efecto de la neuroplasticidad en la rehabilitación post-ECV. Mecanismos, intervenciones y resultados clínicos

Nicolle Herrera Sanmartín, Nixon Josue Espinoza Paladines, Melany Ximena Jimbo Bahamonde, Joselyn Yioma Vinces Mosquera, Tannya Thalia Garay Largo, Emelin Piedad Jaya Andarde, Víctor Euclides Briones Morales

Resumen


El artículo examina el impacto de la neuroplasticidad en la rehabilitación post-ECV, explorando los mecanismos subyacentes, las intervenciones terapéuticas y los resultados clínicos obtenidos. La neuroplasticidad, capacidad del cerebro para reorganizar sus conexiones neuronales, juega un papel crucial en la recuperación funcional tras un accidente cerebrovascular. Se abordan diversas estrategias terapéuticas que promueven la neuroplasticidad, como la terapia de restricción inducida, la rehabilitación cognitiva y la estimulación cerebral no invasiva, evidenciando sus efectos en la mejora de las funciones motoras, cognitivas y emocionales. Además, se analiza el impacto de las tecnologías emergentes, como la realidad virtual, la estimulación magnética transcraneal y las interfaces cerebro-computadora, en la optimización de la rehabilitación. Sin embargo, la efectividad de estas intervenciones varía según factores individuales, lo que subraya la importancia de personalizar los tratamientos. El artículo concluye que la integración de tecnologías avanzadas, combinada con enfoques tradicionales y un tratamiento individualizado, es esencial para mejorar los resultados clínicos en la rehabilitación post-ECV.


Palabras clave


Neuroplasticidad; Rehabilitación post-ECV; Terapia cognitiva; Estimulación cerebral; Tecnologías emergentes.

Texto completo:

PDF HTML

Referencias


Baroncelli, L., & Lunghi, C. (2021). Neuroplasticity of the visual cortex: in sickness and in health. Experimental Neurology, 335, 113515. https://doi.org/10.1016/j.expneurol.2020.113515

Camandola, S., Plick, N., & Mattson, M. P. (2019). Impact of Coffee and Cacao Purine Metabolites on Neuroplasticity and Neurodegenerative Disease. Neurochemical Research, 44(1), 214–227. https://doi.org/10.1007/s11064-018-2492-0

Dąbrowski, J., Czajka, A., Zielińska-Turek, J., Jaroszyński, J., Furtak-Niczyporuk, M., Mela, A., Poniatowski, Ł. A., Drop, B., Dorobek, M., Barcikowska-Kotowicz, M., & Ziemba, A. (2019). Brain Functional Reserve in the Context of Neuroplasticity after Stroke. Neural Plasticity, 2019, 9708905. https://doi.org/10.1155/2019/9708905

de Oliveira, R. M. W. (2020a). Neuroplasticity. Journal of Chemical Neuroanatomy, 108, 101822. https://doi.org/10.1016/j.jchemneu.2020.101822

de Sousa Fernandes, M. S., Ordônio, T. F., Santos, G. C. J., Santos, L. E. R., Calazans, C. T., Gomes, D. A., & Santos, T. M. (2020a). Effects of Physical Exercise on Neuroplasticity and Brain Function: A Systematic Review in Human and Animal Studies. Neural Plasticity, 2020, 8856621. https://doi.org/10.1155/2020/8856621

de Sousa Fernandes, M. S., Ordônio, T. F., Santos, G. C. J., Santos, L. E. R., Calazans, C. T., Gomes, D. A., & Santos, T. M. (2020b). Effects of Physical Exercise on Neuroplasticity and Brain Function: A Systematic Review in Human and Animal Studies. Neural Plasticity, 2020, 8856621. https://doi.org/10.1155/2020/8856621

Farjat-Pasos, J. I., Chamorro, A., Lanthier, S., Robichaud, M., Mengi, S., Houde, C., & Rodés-Cabau, J. (2023). Cerebrovascular Events in Older Patients With Patent Foramen Ovale: Current Status and Future Perspectives. Journal of Stroke, 25(3), 338–349. https://doi.org/10.5853/jos.2023.01599

Hugues, N., Pellegrino, C., Rivera, C., Berton, E., Pin-Barre, C., & Laurin, J. (2021). Is High-Intensity Interval Training Suitable to Promote Neuroplasticity and Cognitive Functions after Stroke? International Journal of Molecular Sciences, 22(6). https://doi.org/10.3390/ijms22063003

Innocenti, G. M. (2022). Defining neuroplasticity. Handbook of Clinical Neurology, 184, 3–18. https://doi.org/10.1016/B978-0-12-819410-2.00001-1

Johansson, H., Hagströmer, M., Grooten, W. J. A., & Franzén, E. (2020). Exercise-Induced Neuroplasticity in Parkinson’s Disease: A Metasynthesis of the Literature. Neural Plasticity, 2020, 8961493. https://doi.org/10.1155/2020/8961493

Johnson, B. P., & Cohen, L. G. (2023a). Applied strategies of neuroplasticity. Handbook of Clinical Neurology, 196, 599–609. https://doi.org/10.1016/B978-0-323-98817-9.00011-9

Johnson, B. P., & Cohen, L. G. (2023b). Applied strategies of neuroplasticity. Handbook of Clinical Neurology, 196, 599–609. https://doi.org/10.1016/B978-0-323-98817-9.00011-9

Karger, G. (2021). 30 years of Cerebrovascular Diseases. Cerebrovascular Diseases (Basel, Switzerland), 50(1), 1. https://doi.org/10.1159/000514372

Kim, B.-K., Hong, S.-J., Cho, Y.-H., Yun, K. H., Kim, Y. H., Suh, Y., Cho, J. Y., Her, A.-Y., Cho, S., Jeon, D. W., Yoo, S.-Y., Cho, D.-K., Hong, B.-K., Kwon, H., Ahn, C.-M., Shin, D.-H., Nam, C.-M., Kim, J.-S., Ko, Y.-G., … TICO Investigators. (2020). Effect of Ticagrelor Monotherapy vs Ticagrelor With Aspirin on Major Bleeding and Cardiovascular Events in Patients With Acute Coronary Syndrome: The TICO Randomized Clinical Trial. JAMA, 323(23), 2407–2416. https://doi.org/10.1001/jama.2020.7580

Koch, G., & Spampinato, D. (2022a). Alzheimer disease and neuroplasticity. Handbook of Clinical Neurology, 184, 473–479. https://doi.org/10.1016/B978-0-12-819410-2.00027-8

Kotake, K., Mitsuboshi, S., Omori, Y., Kawakami, Y., & Kawakami, Y. (2023). Evaluation of Risk of Cardiac or Cerebrovascular Events in Romosozumab Users Focusing on Comorbidities: Analysis of the Japanese Adverse Drug Event Report Database. The Journal of Pharmacy Technology : JPT : Official Publication of the Association of Pharmacy Technicians, 39(1), 23–28. https://doi.org/10.1177/87551225221144960

León Ruiz, M., Rodríguez Sarasa, M. L., Sanjuán Rodríguez, L., Benito-León, J., García-Albea Ristol, E., & Arce Arce, S. (2018). Current evidence on transcranial magnetic stimulation and its potential usefulness in post-stroke neurorehabilitation: Opening new doors to the treatment of cerebrovascular disease. Neurologia, 33(7), 459–472. https://doi.org/10.1016/j.nrl.2016.03.008

Madinier, A., Bertrand, N., Mossiat, C., Prigent-Tessier, A., Beley, A., Marie, C., & Garnier, P. (2009). Microglial involvement in neuroplastic changes following focal brain ischemia in rats. PloS One, 4(12), e8101. https://doi.org/10.1371/journal.pone.0008101

Maida, C. D., Daidone, M., Pacinella, G., Norrito, R. L., Pinto, A., & Tuttolomondo, A. (2022). Diabetes and Ischemic Stroke: An Old and New Relationship an Overview of the Close Interaction between These Diseases. International Journal of Molecular Sciences, 23(4). https://doi.org/10.3390/ijms23042397

Mašić, V., Šečić, A., Trošt Bobić, T., & Femec, L. (2020). Neuroplasticity and Braille reading. Acta Clinica Croatica, 59(1), 147–153. https://doi.org/10.20471/acc.2020.59.01.18

Mattson, M. P., Moehl, K., Ghena, N., Schmaedick, M., & Cheng, A. (2018). Intermittent metabolic switching, neuroplasticity and brain health. Nature Reviews. Neuroscience, 19(2), 63–80. https://doi.org/10.1038/nrn.2017.156

Mitchell, G. S., & Baker, T. L. (2022). Respiratory neuroplasticity: Mechanisms and translational implications of phrenic motor plasticity. Handbook of Clinical Neurology, 188, 409–432. https://doi.org/10.1016/B978-0-323-91534-2.00016-3

Monge-Pereira, E., Molina-Rueda, F., Rivas-Montero, F. M., Ibáñez, J., Serrano, J. I., Alguacil-Diego, I. M., & Miangolarra-Page, J. C. (2017). Electroencephalography as a post-stroke assessment method: An updated review. Neurologia (Barcelona, Spain), 32(1), 40–49. https://doi.org/10.1016/j.nrl.2014.07.002

Morishita, H., & Vinogradov, S. (2019). Neuroplasticity and dysplasticity processes in schizophrenia. Schizophrenia Research, 207, 1–2. https://doi.org/10.1016/j.schres.2019.03.008

Murciano-Brea, J., Garcia-Montes, M., Geuna, S., & Herrera-Rincon, C. (2021a). Gut Microbiota and Neuroplasticity. Cells, 10(8). https://doi.org/10.3390/cells10082084

Murciano-Brea, J., Garcia-Montes, M., Geuna, S., & Herrera-Rincon, C. (2021b). Gut Microbiota and Neuroplasticity. Cells, 10(8). https://doi.org/10.3390/cells10082084

Popescu, B. O., Batzu, L., Ruiz, P. J. G., Tulbă, D., Moro, E., & Santens, P. (2024a). Neuroplasticity in Parkinson’s disease. Journal of Neural Transmission (Vienna, Austria : 1996), 131(11), 1329–1339. https://doi.org/10.1007/s00702-024-02813-y

Popescu, B. O., Batzu, L., Ruiz, P. J. G., Tulbă, D., Moro, E., & Santens, P. (2024b). Neuroplasticity in Parkinson’s disease. Journal of Neural Transmission (Vienna, Austria : 1996), 131(11), 1329–1339. https://doi.org/10.1007/s00702-024-02813-y

Quartarone, A., & Ghilardi, M. F. (2022). Neuroplasticity in dystonia: Motor symptoms and beyond. Handbook of Clinical Neurology, 184, 207–218. https://doi.org/10.1016/B978-0-12-819410-2.00031-X

Rodrigues, A. C., Silva, G. S., Monaco, C. G., Costa, R. C. P. L., Piveta, R. B., Fischer, C. H., Lira-Filho, E. B., Morhy, S. S., & Campos Vieira, M. L. (2023). Three-dimensional transesophageal echocardiographic evaluation of aortic plaque after cerebrovascular event. Revista Portuguesa de Cardiologia : Orgao Oficial Da Sociedade Portuguesa de Cardiologia = Portuguese Journal of Cardiology : An Official Journal of the Portuguese Society of Cardiology, 42(2), 149–155. https://doi.org/10.1016/j.repc.2021.12.017

Saleki, K., Banazadeh, M., Saghazadeh, A., & Rezaei, N. (2023). Aging, testosterone, and neuroplasticity: friend or foe? Reviews in the Neurosciences, 34(3), 247–273. https://doi.org/10.1515/revneuro-2022-0033

Shu, Y., Chen, J., Ding, Y., & Zhang, Q. (2023). Adverse events with risankizumab in the real world: postmarketing pharmacovigilance assessment of the FDA adverse event reporting system. Frontiers in Immunology, 14, 1169735. https://doi.org/10.3389/fimmu.2023.1169735

Tartt, A. N., Mariani, M. B., Hen, R., Mann, J. J., & Boldrini, M. (2022). Dysregulation of adult hippocampal neuroplasticity in major depression: pathogenesis and therapeutic implications. Molecular Psychiatry, 27(6), 2689–2699. https://doi.org/10.1038/s41380-022-01520-y

Vandormael, C., Schoenhals, L., Hüppi, P. S., Filippa, M., & Borradori Tolsa, C. (2019). Language in Preterm Born Children: Atypical Development and Effects of Early Interventions on Neuroplasticity. Neural Plasticity, 2019, 6873270. https://doi.org/10.1155/2019/6873270

Vints, W. A. J., Levin, O., Fujiyama, H., Verbunt, J., & Masiulis, N. (2022a). Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Frontiers in Neuroendocrinology, 66, 100993. https://doi.org/10.1016/j.yfrne.2022.100993

Vints, W. A. J., Levin, O., Fujiyama, H., Verbunt, J., & Masiulis, N. (2022b). Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Frontiers in Neuroendocrinology, 66, 100993. https://doi.org/10.1016/j.yfrne.2022.100993

Wu, H.-X., Chu, T.-Y., Iqbal, J., Jiang, H.-L., Li, L., Wu, Y.-X., & Zhou, H.-D. (2023). Cardio-cerebrovascular Outcomes in MODY, Type 1 Diabetes, and Type 2 Diabetes: A Prospective Cohort Study. The Journal of Clinical Endocrinology and Metabolism, 108(11), 2970–2980. https://doi.org/10.1210/clinem/dgad233

Xing, Y., & Bai, Y. (2020a). A Review of Exercise-Induced Neuroplasticity in Ischemic Stroke: Pathology and Mechanisms. Molecular Neurobiology, 57(10), 4218–4231. https://doi.org/10.1007/s12035-020-02021-1

Xing, Y., & Bai, Y. (2020b). A Review of Exercise-Induced Neuroplasticity in Ischemic Stroke: Pathology and Mechanisms. Molecular Neurobiology, 57(10), 4218–4231. https://doi.org/10.1007/s12035-020-02021-1

Yger, M., Weisenburger-Lile, D., & Alamowitch, S. (2021). Cerebrovascular events during pregnancy and puerperium. Revue Neurologique, 177(3), 203–214. https://doi.org/10.1016/j.neurol.2021.02.001

Zhang, J., Lu, C., Wu, X., Nie, D., & Yu, H. (2021). Neuroplasticity of Acupuncture for Stroke: An Evidence-Based Review of MRI. Neural Plasticity, 2021, 2662585. https://doi.org/10.1155/2021/2662585

Zwergal, A., Lindner, M., Grosch, M., & Dieterich, M. (2022). In vivo neuroplasticity in vestibular animal models. Molecular and Cellular Neurosciences, 120, 103721. https://doi.org/10.1016/j.mcn.2022.103721




DOI: https://doi.org/10.23857/pc.v9i12.8705

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/