Uso de la Teoría APOE para el aprendizaje y comprensión de las matemáticas
Resumen
Un marco constructivista para un mejor aprendizaje de las matemáticas, es la teoría APOE. Este estudio revisa su aplicación, efectividad y métodos de evaluación asociados. Se sintetiza la literatura existente en el aprendizaje de las matemáticas avanzadas, identificando tendencias, hallazgos clave y áreas de oportunidad para futuras investigaciones. Para lo cual, se realizó una búsqueda sistemática en plataformas de indexación académica, abarcando un período de 44 años (1980-2024). Se aplicaron parámetros de elegibilidad precisos, considerando artículos revisados por pares, tesis doctorales y libros académicos en inglés y español. Se categorizaron los estudios según áreas matemáticas, niveles educativos y enfoques metodológicos. La revisión reveló la aplicación exitosa de APOE en diversas áreas de matemáticas avanzadas, demostrando su eficacia en muchos de los casos. Se identificaron métodos de evaluación alineados con APOE, incluyendo entrevistas clínicas y tareas específicamente diseñadas. La integración de APOE con otros marcos teóricos, como la Taxonomía de Bloom, mostró potencial para mejorar el diseño instruccional. La teoría APOE es útil en educación matemática y el diseño de instrucción. Aunque enfrenta desafíos en su implementación práctica, ofrece una base sólida para comprender y facilitar el aprendiza-je de matemáticas avanzadas. Se recomienda continuar investigando su aplicación en contextos diversos y su integración con tecnologías educativas emergentes.
Palabras clave
Texto completo:
PDFReferencias
Anderson, L. W., y Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives: complete edition. Pearson.
Antonini, S., y Nannini, B. (2024). Chains of inferences in proof by induction: a cognitive analysis. En A. Piccolomini d'Aragona, Perspectives on Deduction: Contemporary Studies in the Philosophy, History and Formal Theories of Deduction (pp. 373-395). Springer, Cham International Publishing. https://doi.org/10.1007/978-3-031-51406-7_17
Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Roa Fuentes, S., Trigueros, M., y Weller, K. (2014). APOS Theory. A Framework for Research and Curriculum Development in Mathematics Education. New York: Springer Science+Business Media. https://doi.org/10.1007/978-1-4614-7966-6
Asiala, M., Brown, A., DeVries, D. J., Dubinsky, E., Mathews, D., y Thomas, K. (1996). A framework for research and curriculum development in undergraduate mathematics education. Mathematics Education (CBMS), 2(s.n.), 1-32. https://www.researchgate.net/profile/Mark-Asiala/publication/2784058_A_Framework_for_Research_and_Curriculum_Development_in_Undergraduate_Mathematics_Education/links/54ca6e4c0cf2517b755e08e5/A-Framework-for-Research-and-Curriculum-Development-in-Undergrad
Asiala, M., Cottrill, J., Dubinsky, E., y Schwingendorf, K. E. (1997). The development of students' graphical understanding of the derivative. The Journal of Mathematical Behavior, 16(4), 399-431. https://doi.org/10.1016/S0732-3123(97)90015-8
Borji, V., Martínez-Planell, R., y Trigueros, M. (1 de 2024). Students’ geometric understanding of partial derivatives and the locally linear approach. Educational Studies in Mathematics, 115(1), 69-91. https://doi.org/10.1007/s10649-023-10242-z
Borji, V., Martínez-Planell, R., y Trigueros, M. (8 de 2024). Students’ Understanding of Riemann Sums and Double Integrals: The Case of Task Design in APOS Theory. International Journal of Research in Undergraduate Mathematics Education, 10(1), 1-29. https://doi.org/doi.org/10.1007/s40753-024-00250-6
Brown, A., McDonald, M., y Weller, K. (2010). Step by step: Infinite iterative processes and actual infinity. En F. Hitt, D. A. Holton, y P. W. Thompson, Research in Collegiate Mathematics Education VII (Vol. 16, pp. 115-141). CBMS Issues in Mathematics Education. https://books.google.com.ec/books?id=DCqNAwAAQBAJ&printsec=frontcover&hl=es#v=onepage&q&f=false
Camilli, G. (2006). est fairness. Educational measurement. En R. L. Brennan, Educational Measurement (Ace Praeger Series on Higher Education) Fourth Edición (pp. 221-256). Rowman & Littlefield Publishers.
Clark, J. M., Cordero, F., Cottrill, J., Czarnocha, B., DeVries, D. J., John, D. S., . . . Vidakovic, D. (1997). Constructing a schema: The case of the chain rule?. The Journal of Mathematical Behavior, 16(4), 345-364. https://doi.org/10.1016/S0732-3123(97)90012-2
Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., y Vidakovic, D. (1996). Understanding the limit concept: Beginning with a coordinated process scheme. Journal of mathematical behavior, 15(2), 167-192. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2365c8d466082f1f81fa7ab3baaa5a333fea92c9
De Ayala, R. J. (2009). The theory and practice of item response theory. Guilford Publications.
Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. En D. Tall, Advanced mathematical thinking (pp. 95-126). Dordrecht: Springer Netherlands. https://doi.org/10.1007/0-306-47203-1
Dubinsky, E., Dautermann, J., Leron, U., y Zazkis, R. (10 de 1994). On learning fundamental concepts of group theory. Educational studies in Mathematics, 27(3), 267-305. https://doi.org/10.1007/BF01273732
Dubinsky, E., y McDonald, M. A. (2001). APOS: A constructivist theory of learning in undergraduate mathematics education research. En D. Holton, M. Artigue, U. Kirchgräber, J. Hillel, M. Niss, y A. Schoenfeld, The teaching and learning of mathematics at university level: An ICMI study (pp. 275-282). Dordrecht: Springer Netherlands. https://doi.org/10.1007/0-306-47231-7
Duschl, R., Maeng, S., y Sezen, A. (9 de 2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47(2), 123-182. https://doi.org/10.1080/03057267.2011.604476
Epstein, J. (9 de 2013). The calculus concept inventory-measurement of the effect of teaching methodology in mathematics. Notices of the American Mathematical Society, 60(8), 1018-1027. https://www.ams.org/notices/201308/rnoti-p1018.pdf
Ericsson, K. A., y Simon, H. A. (1993). Protocol analysis (revised edition). Overview of methodology of protocol analysis. The MIT Press.
García-García, J. (8 de 2024). Mathematical Understanding Based on the Mathematical Connections Made by Mexican High School Students Regarding Linear Equations and Functions. The Mathematics Enthusiast, 21(3), 673-718. https://doi.org/10.54870/1551-3440.1646
Garfield, J. B. (5 de 2003). Assessing statistical reasoning. Statistics Education Research Journal, 2(1), 22-38. https://doi.org/10.52041/serj.v2i1.557
Hestenes, D., Wells, M., y Swackhamer, G. (1992). Force concept inventory. The physics teacher, 30(3), 141-158. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=462eb5d25a5eb3c18e22ee486019b2153b1f0785
Hevardani, K. A. (1 de 2024). Analysis of students' mental construction in understanding the concept of partial derivatives based on action-process-object-schema theory. Nature, 18(4), 735-749. https://doi.org/10.31331/medivesveteran.v8i1.2576.
How, R. P., Zulnaidi, H., y Rahim, S. S. (3 de 2024). Development and Validation of a Teaching Module based on the Traditional Approach of the Japanese Bansho Plan Towards the Mastery of Quadratic Equations. International Journal of Information and Education Technology, 14(3), 411-425. https://doi.org/10.18178/ijiet.2024.14.3.2062
Kaput, J. J. (2008). What Is Algebra? What Is Algebraic Reasoning? En J. J. Kaput, D. W. Carraher, y M. L. Blanton, Algebra in the Early Grades (p. 14). Taylor&Francis. https://doi.org/10.4324/9781315097435
Koedinger, K. R., Brunskill, E., Baker, R. S., McLaughlin, E. A., y Stamper, J. (9 de 2013). New potentials for data-driven intelligent tutoring system development and optimization. AI Magazine, 34(3), 27-41. https://doi.org/10.1609/aimag.v34i3.2484
Krathwohl, D. R. (2002). A revision of Bloom's taxonomy: An overview. Theory Into Practice, 41(4), 212-218. https://doi.org/10.1207/s15430421tip4104_2
Leighton, J., y Gierl, M. (. (2007). Cognitive diagnostic assessment for education: Theory and applications. Cognitive diagnostic assessment for education: Theory and applications.
Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. En R. Leikin, A. Berman, y B. Koichu, Creativity in mathematics and the education of gifted students (pp. 129-145). Brill. https://doi.org/10.1163/9789087909352_010
Martínez-Planell, R., Trigueros, M., y Borji, V. (3 de 2024). The role of topology in the construction of students’ optimization schema for two-variable functions. The Journal of Mathematical Behavior,, 73(s.n.), 101106. https://doi.org/10.1016/j.jmathb.2023.101106
Messick, S. (1995). Validity of psychological assessment: Validation of inferences from persons' responses and performances as scientific inquiry into score meaning. American psychologist, 50(9), 741-749. https://doi.org/10.1037/0003-066X.50.9.741
Norton, A. (2024). Genetic Epistemology as a Complex and Unified Theory of Knowing. En P. C. Dawkins, A. J. Hackenberg, y A. Norton, Piaget’s Genetic Epistemology for Mathematics Education Research (pp. 447-473). Springer Cham. https://doi.org/10.1007/978-3-031-47386-9
Nunnally, J. C., y Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York: McGraw-Hill.
Pellegrino, J. W., Chudowsky, N., y Glaser, R. (2001). Knowing What Students Know: The Science and Design of Educational Assessment. National Academy of Sciences.
Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for research in mathematics education, 26(2), 114-145. https://doi.org/10.5951/jresematheduc.26.2.0114
Tall, D. (1999). Reflections on APOS theory in elementary and advanced mathematical thinking. En O. Zaslaysky, In Proceedings of the 23 rd Conference of the International Group for the Psychology of Mathematics Education (pp. 148-155). Haifa, Israel: Department of Education in Technology and Science. Technion - Israel Institute of Technology.
Tall, D. (2013). How humans learn to think mathematically: Exploring the three worlds of mathematics. Cambridge University Press.
Tallman, M. A., y O’Bryan, A. E. (2024). Reflected Abstraction. En P. Dawkins, A. Hackenberg, y A. Norton, Piaget’s Genetic Epistemology for Mathematics Education Research (pp. 239-288). Springer, Cham. https://doi.org/10.1007/978-3-031-47386-9_8
Tatira, B. (1 de 2024). First-Year Undergraduate Students’ Ways of Thinking in Combinatorics. ournal of Medives: Journal of Mathematics Education IKIP Veteran Semarang, 8(1), 103-121. https://doi.org/10.31331/medivesveteran.v8i1.2576
Thompson, T. (8 de 2008). Mathematics teachers’ interpretation of higher-order thinking in Bloom’s taxonomy. International electronic journal of mathematics education, 3(2), 96-109. https://doi.org/10.29333/iejme/221
Trigueros, M., Badillo, E., Sánchez-Matamoros, G., y Hernández-Rebollar, L. (7 de 2024). Contributions to the characterization of the Schema using APOS theory: Graphing with derivative. ZDM–Mathematics Education, 56(3), 1-16. https://doi.org/https://doi.org/10.1007/s11858-024-01615-6
Trigueros, M., y Martínez-Planell, R. (1 de 2010). Geometrical representations in the learning of two-variable functions. Educational studies in mathematics, 73(s.n.), 3-19. https://doi.org/10.1007/s10649-009-9201-5
Trigueros, M., y Oktaç, A. (5 de 2019). Task design in APOS Theory. Avances de Investigación en Educación Matemática, 15(s.n), 43-55. https://doi.org/10.35763/aiem.v0i15.256
Tsafe, A. K. (2 de 2024). Effective mathematics learning through APOS theory by dint of cognitive abilities. Journal of Mathematics and Science Teacher, 4(2), 1-8. https://doi.org/10.29333/mathsciteacher/14308
Tzur, R., Simon, M. A., Heinz, K., y Kinzel, M. (10 de 2001). An account of a teacher's perspective on learning and teaching mathematics: Implications for teacher development. Journal of Mathematics Teacher Education, 4(s.n.), 227-254. https://doi.org/10.1023/A:1011493204582
Usiskin, Z. (1982). Van Hiele Levels and Achievement in Secondary School Geometry. CDASSG Project. https://eric.ed.gov/?id=ed220288
Wainer, H., Dorans, N. J., Flaugher, R., Green, B. F., y Mislevy, R. J. (2000). Computerized adaptive testing: A primer. . Routledge. https://doi.org/10.4324/9781410605931
Weller, K., Clark, J., Dubinsky, E., Loch, S., McDonald, M., y Merkovsky, R. (2003). Student performance and attitudes in courses based on APOS Theory and the ACE Teaching Cycle. En A. Selden, E. Dubinsky, G. Harel, y F. Hitt, Collegiate Mathematics Education. V (pp. 97-131). American Mathematical Society. https://doi.org/10.1090/cbmath/012/05
Wiliam, D. (3 de 2010). What counts as evidence of educational achievement? The role of constructs in the pursuit of equity in assessment. Review of Research in Education, 34(1), 254-284. https://doi.org/10.3102/0091732X09351544
Williams, C. G. (1998). Using concept maps to assess conceptual knowledge of function. Journal for Research in Mathematics education, 29(4), 414-421. https://doi.org/10.5951/jresematheduc.29.4.0414
Zazkis, R., y Dubinsky, E. (1996). Dihedral groups: a tale of two interpretations. En J. Kaput, A. H. Schoenfeld, E. Dubinsky, y T. Dick, Collegiate Mathematics Education (pp. 61-82). CBMS Issues in Mathematics Education. https://doi.org/10.1090/cbmath/006/03
DOI: https://doi.org/10.23857/pc.v9i9.8342
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/