Investigation of the Physical and Chemical Properties of Sangay Volcanic Ash in Ecuador

Christian Ordóñez, Andrés Carranco, Marco Mejía, Santiago Toapanta

Resumen


Ecuador, rich in volcanic landscape where Sangay Volcano being one of the most consistently active among them. On average, the nation experiences five eruptions every decade, with Sangay's significant eruptions documented since 1628. This comprehensive study delves deep into the characteristics of ash from the Sangay Volcano. Key physical attributes such as specific gravity, bulk density, water content, plasticity index, particle-size distribution, permeability, and chemical composition, including the presence of quartz, plagioclase, hornblende, and secondary minerals like oxides and epidote, are meticulously examined. Notably, chemical analyses highlight a high content of silex, andesine plagioclase, and pozzolan, indicating potential applications in cement production. Using a structured approach, samples from Sangay National Park were prepared through the riffle splitting method and subjected to a series of tests based on established ASTM standards. Alongside the properties analysis, an extensive literature review was conducted, revealing the multifaceted applications of volcanic ash, especially in soil stabilization, adsorbent innovations, and geopolymer cement enhancement. Conclusively, the unique attributes of Sangay's volcanic ash underscore its immense potential in diverse engineering and environmental applications, emphasizing the imperative for continued research to harness its full capabilities.


Palabras clave


Volcanic Ash; Sangay Volcano; Physical Properties; Chemical Properties; Ecuador.

Texto completo:

PDF HTML

Referencias


B. Bernard et al., “Forecasting and Communicating the Dispersion and Fallout of Ash During Volcanic Eruptions: Lessons From the September 20, 2020 Eruptive Pulse at Sangay Volcano, Ecuador,” Front. Earth Sci., 2022, doi: 10.3389/feart.2022.912835.

H. Kumagai et al., “Enhancing volcano-monitoring capabilities in Ecuador,” Eos, Trans. Am. Geophys. Union, vol. 88, no. 23, pp. 245–246, 2007, doi: 10.1029/2007eo230001.

P. Ramón et al., “Instituto Geofísico – Escuela Politécnica Nacional, the Ecuadorian Seismology and Volcanology Service,” Volcanica, vol. 4, pp. 93–112, 2021, doi: 10.30909/vol.04.s1.93112.

S. Hidalgo et al., “Sangay volcano (Ecuador): multiparametric analysis of the December 2021 eruptive activity including the opening of new vents, a drumbeat seismic sequence and a new lava flow,” in EGU General Assembly 2023, 2023. doi: https://doi.org/10.5194/egusphere-egu23-9354, 2023.

M. Monzier et al., “Sangay volcano, Ecuador: Structural development, present activity and petrology,” J. Volcanol. Geotherm. Res., vol. 90, no. 1–2, pp. 49–79, 1999, doi: 10.1016/S0377-0273(99)00021-9.

M. Bass et al., “Global Conservation Significance of Ecuador’s Yasuní National Park,” PLoS One, 2010, doi: 10.1371/journal.pone.0008767.

N. Abu-Khalaf, “Before Reliable Near Infrared Spectroscopic Analysis - The Critical Sampling Proviso. Part 1: Generalised Theory of Sampling,” J. Near Infrared Spectrosc., 2022, doi: 10.1177/09670335221124612.

R. W. Gerlach, D. E. Dobb, G. E. Raab, and J. C. Nocerino, “Gy Sampling Theory in Environmental Studies. 1. Assessing Soil Splitting Protocols,” J. Chemom., 2002, doi: 10.1002/cem.705.

R. C. A. Minnitt, “The Grouping and Segregation Error in the Rice Experiment,” Minerals, 2022, doi: 10.3390/min12030335.

C. K. Wentworth, “A Scale of Grade and Class Terms for Clastic Sediments,” J. Geol., vol. 30, no. 5, pp. 377–392, 1922.

R. V. Fisher and H. U. Schmincke, “Volcaniclastic sediment transport and deposition,” in Sediment transport and depositional processes, K. Pye, Ed., Edinburgh, United Kingdom: Blackwell Scientific Publications, 1994, pp. 351–388.

I. P. Hastuty et al., “The Utilization of Volcanic Ash and High Rusk Ash as Material Stabilization in Clay by Unconfined Compression Test (UCT) and California Bearing Ratio (CBR),” vol. 180, p. 012141, 2017, doi: 10.1088/1757-899x/180/1/012141.

R. Prajudi and S. Syahril, “Analysis of Soft Soil Shear Strength on Slopes Stabilized Using Volcanic Ash and Phosphoric Acid,” 2021, doi: 10.2991/aer.k.211106.045.

E. T. Wahyuni, R. Roto, F. A. Nissa, M. Mudasir, and N. H. Aprilita, “Modified Silica Adsorbent From Volcanic Ash for Cr(VI) Anionic Removal,” Indones. J. Chem., 2018, doi: 10.22146/ijc.26905.

D. Sood and K. M. A. Hossain, “Fresh State, Rheological and Microstructural Characteristics of Alkali-Activated Mortars Developed Using Novel Dry Mixing Technique Under Ambient Conditions,” Appl. Sci., 2021, doi: 10.3390/app11198920.

D. Stephan, A. Elimbi, H. K. Tchakouté, and S. Kumar, “Volcanic Ash-Based Geopolymer Cements/Concretes: The Current State of the Art and Perspectives,” Environ. Sci. Pollut. Res., 2016, doi: 10.1007/s11356-016-8230-8.

P. K. Sarker, S. Kelly, and Z. Yao, “Effect of Fire Exposure on Cracking, Spalling and Residual Strength of Fly Ash Geopolymer Concrete,” Mater. Des., 2014, doi: 10.1016/j.matdes.2014.06.059.

E. Pabiś-Mazgaj, P. Pichniarczyk, A. Stempkowska, and T. Gawenda, “Possibility of Using Natural Zeolite Waste Granules Obtained by Pressure Agglomeration as a Sorbent for Petroleum Substances From Paved Surfaces,” Materials (Basel)., 2022, doi: 10.3390/ma15196871.

P. Chindaprasirt, P. Jitsangiam, P. K. Pachana, and U. Rattanasak, “Self-Cleaning Superhydrophobic Fly Ash Geopolymer,” Sci. Rep., 2023, doi: 10.1038/s41598-022-27061-6.

P. N. Lemougna et al., “Review on the use of volcanic ashes for engineering applications,” Resour. Conserv. Recycl., vol. 137, no. January, pp. 177–190, 2018, doi: 10.1016/j.resconrec.2018.05.031.

P. J. Tikalsky et al., “Use of Raw or Processed Natural Pozzolans in Concrete Reported by ACI Committee 232,” Aci 232.1R-00, pp. 1–24, 2001.

S. Dilaria et al., “Early exploitation of Neapolitan pozzolan (pulvis puteolana) in the Roman theatre of Aquileia, Northern Italy,” Sci. Rep., vol. 13, no. 1, pp. 1–18, 2023, doi: 10.1038/s41598-023-30692-y.

K. E. H. Eldahroty, A. A. Farghali, N. Shehata, and O. A. Mohamed, “Valorification of Egyptian volcanic tuff as eco-sustainable blended cementitious materials,” Sci. Rep., vol. 13, no. 1, pp. 1–16, 2023, doi: 10.1038/s41598-023-30612-0.

G. G. Yowa, N. Sivakugan, R. Tuladhar, and G. Arpa, “Strength and Rheology of Cemented Pastefill Using Waste Pitchstone Fines and Common Pozzolans Compared to Using Portland Cement,” Int. J. Geosynth. Gr. Eng., vol. 8, no. 5, pp. 1–13, 2022, doi: 10.1007/s40891-022-00400-3.

M. Hefni, H. A. M. Ahmed, E. S. Omar, and M. A. Ali, “The potential re‐use of saudi mine tailings in mine backfill: A path towards sustainable mining in saudi arabia,” Sustain., vol. 13, no. 11, 2021, doi: 10.3390/su13116204.

D. Sinkhonde, R. O. Onchiri, W. O. Oyawa, and J. N. Mwero, “Effect of Waste Clay Brick Powder on Physical and Mechanical Properties of Cement Paste,” Open Civ. Eng. J., vol. 15, no. 1, pp. 370–380, 2022, doi: 10.2174/1874149502115010370.

Bhagath, Singh and K. Subramaniam, “Effective Utilization of fly ash for different applications,” no. January, 2018.




DOI: https://doi.org/10.23857/pc.v9i8.7690

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/