Análisis del Uso de Machine Learning para Sistema de control predictivo a nivel industrial

Diego Alexis Chango Chango, Alex Darwin Paredes Anchatipán, Freddy Rodrigo Romero Bedón

Resumen


Este estudio analiza la integración del Machine Learning (ML) en sistemas de control predictivo a nivel industrial, revelando una tendencia creciente y prometedora en diversos sectores. La investigación muestra un aumento exponencial en la aplicación de técnicas de ML, como redes neuronales recurrentes (LSTM), Random Forest y redes neuronales convolucionales (CNN), en control predictivo industrial. Los casos de estudio examinados, que abarcan desde la industria petroquímica hasta la manufactura automotriz y el monitoreo ambiental, demuestran mejoras significativas en eficiencia, precisión y productividad. Se observa una adopción global de estas tecnologías, incluyendo implementaciones exitosas en países en desarrollo como Ecuador. A pesar de los beneficios evidentes, se identifican desafíos persistentes, como la necesidad de grandes conjuntos de datos de calidad, problemas de interpretabilidad y complejidad computacional. El estudio destaca la tendencia hacia enfoques híbridos que combinan conocimiento basado en principios físicos con ML, ofreciendo un equilibrio entre interpretabilidad y adaptabilidad. Se concluye que la integración de ML en control predictivo industrial representa una solución transformadora en la automatización industrial, con el potencial de revolucionar la gestión y operación de sistemas industriales complejos, impulsando la innovación en fabricación y control de procesos.


Palabras clave


Machine Learning; Control Predictivo Industrial; Automatización Inteligente; Optimización de Procesos; Industria 4.0.

Texto completo:

PDF HTML

Referencias


M. Ghobakhloo, "The future of manufacturing industry: a strategic roadmap toward Industry 4.0," Journal of Manufacturing Technology Management, vol. 29, no. 6, pp. 910-936, 2020.

A. Kusiak, "Smart manufacturing must embrace big data," Nature, vol. 544, no. 7648, pp. 23-25, 2019.

F. Borrelli, A. Bemporad, and M. Morari, "Predictive control for linear and hybrid systems," Cambridge University Press, 2019.

S. J. Qin and T. A. Badgwell, "A survey of industrial model predictive control technology," Control Engineering Practice, vol. 11, no. 7, pp. 733-764, 2020.

J. H. Lee, "Model predictive control: Review of the three decades of development," International Journal of Control, Automation and Systems, vol. 9, no. 3, pp. 415-424, 2021.

Z. Y. Wan, P. Vlachas, P. Koumoutsakos, and T. Sapsis, "Data-assisted reduced-order modeling of extreme events in complex dynamical systems," PLoS One, vol. 13, no. 5, e0197704, 2019.

Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2020.

J. Zhang and D. Zhao, "Data-Driven Smart Manufacturing," Journal of Manufacturing Systems, vol. 48, pp. 157-169, 2019.

D. Psichogios and L. Ungar, "A hybrid neural network-first principles approach to process modeling," AIChE Journal, vol. 38, no. 10, pp. 1499-1511, 2020.

K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, vol. 2, no. 5, pp. 359-366, 2019.

S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, vol. 9, no. 8, pp. 1735-1780, 2019.

T. Hastie, R. Tibshirani, and J. Friedman, "The Elements of Statistical Learning: Data Mining, Inference, and Prediction," Springer Science & Business Media, 2019.

G. Pillonetto, F. Dinuzzo, T. Chen, G. De Nicolao, and L. Ljung, "Kernel methods in system identification, machine learning and function estimation: A survey," Automatica, vol. 50, no. 3, pp. 657-682, 2020.

A. Agarwal, A. Beygelzimer, M. Dudík, J. Langford, and H. Wallach, "A reductions approach to fair classification," in Proceedings of the 35th International Conference on Machine Learning, PMLR 80:60-69, 2019.

C. L. Philip Chen and C. Y. Zhang, "Data-intensive applications, challenges, techniques and technologies: A survey on Big Data," Information Sciences, vol. 275, pp. 314-347, 2020.

B. Recht, "A tour of reinforcement learning: The view from continuous control," Annual Review of Control, Robotics, and Autonomous Systems, vol. 2, pp. 253-279, 2019.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, "Intriguing properties of neural networks," in International Conference on Learning Representations, 2019.

D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, M. Young, J. F. Crespo, and D. Dennison, "Hidden technical debt in machine learning systems," in Advances in Neural Information Processing Systems, pp. 2503-2511, 2019.

M. Behl, A. Jain, and R. Mangharam, "Data-driven modeling, control and tools for cyber-physical energy systems," in 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS), pp. 1-10, IEEE, 2019.

J. Lago, F. De Ridder, and B. De Schutter, "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, vol. 221, pp. 386-405, 2020.

J. Zhang, "Batch-to-batch optimal control of a batch polymerisation process based on stacked neural network models," Chemical Engineering Science, vol. 63, no. 5, pp. 1273-1281, 2019.

S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, "A survey of deep learning techniques for autonomous driving," Journal of Field Robotics, vol. 37, no. 3, pp. 362-386, 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, "Attention is all you need," in Advances in Neural Information Processing Systems, pp. 5998-6008, 2019.

C. Finn, P. Abbeel, and S. Levine, "Model-agnostic meta-learning for fast adaptation of deep networks," in Proceedings of the 34th International Conference on Machine Learning, PMLR 70:1126-1135, 2020.

S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu, "On the sample complexity of the linear quadratic regulator," Foundations of Computational Mathematics, vol. 20, no. 4, pp. 633-679, 2020.




DOI: https://doi.org/10.23857/pc.v9i7.7549

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/