Economic and Technical Feasibility of Nanogrids: A Solution to Reduce the Impact of Energy Shortage in Ecuador Caused by Droughts

Alex Ricardo Guamán Andrade, José Luis Guamán Andrade, Hugo Javier Sánchez Moreno, Isaac David Torres Paredes

Resumen


Residential nanogrids represent a promising solution to address energy shortages caused by generation failures or deficits due to droughts in Ecuador. This paper explores the feasibility of adopting a residential nanogrid system, focusing on the use of renewable energy to improve power supply reliability and reduce dependence on the power grid, thereby improving energy resilience. The study analyzes the different aspects necessary to implement a nanogrid, including the selection of suitable renewable energy sources, energy storage systems and load characterization. Once the architecture is selected, an optimization study using specialized software evaluates the basic architecture to determine the optimal solution, considering aspects such as the autonomy capacity and the investment required for each network configuration. Finally, the document concludes with an analysis of the results, identifying the network configuration that offers a good return on investment period and sufficient autonomy capacity to avoid power outages during short intervals of time.


Palabras clave


Nanonetworks; Renewable energy; Power outages; Droughts.

Texto completo:

PDF HTML

Referencias


Akinyele, D. (2017). Techno-economic design and performance analysis of nanogrid systems for households in energy-poor villages. Sustainable Cities and Society, 34, 335–357. https://doi.org/10.1016/j.scs.2017.07.004

Ali, A., Fakhar, M. S., Kashif, S. A. R., Abbas, G., Khan, I. A., Rasool, A., & Ullah, N. (2022). Optimal Scheduling of Neural Network-Based Estimated Renewable Energy Nanogrid. Energies, 15(23). https://doi.org/10.3390/en15238933

Campozano, L., Ballari, D., Montenegro, M., & Avilés, A. (2020). Future Meteorological Droughts in Ecuador: Decreasing Trends and Associated Spatio-Temporal Features Derived From CMIP5 Models. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.00017

Casey, J. A., Fukurai, M., Hernández, D., Balsari, S., & Kiang, M. V. (2020). Power Outages and Community Health: a Narrative Review. In Current Environmental Health Reports (Vol. 7, Issue 4, pp. 371–383). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s40572-020-00295-0

Chattopadhyay, S. (2022). Nanogrids and Picogrids and their Integration with Electric Vehicles. The Institution of Engineering and Technology.

CNN. (2024, April 22). Cortes de energía continuarán en Ecuador. Retrieved from CNN Español: https://cnnespanol.cnn.com/2024/04/22/cortes-energia-continuaran-ecuador-orix/

Desbureaux, S., & Rodella, A. S. (2019). Drought in the city: The economic impact of water scarcity in Latin American metropolitan areas. World Development, 114, 13–27. https://doi.org/10.1016/j.worlddev.2018.09.026

Estupiñán Sosa, I. J., Ballestero Torres, F. A., & Pezo Ortiz, D. M. (2022). Uso de las Energías Renovables En La Agroindustria en Ecuador. Ciencia Latina Revista Científica Multidisciplinar, 6(5), 5679–5697. https://doi.org/10.37811/cl_rcm.v6i5.3744

EL Comercio. (2024, April 18). Cortes de luz en Ecuador serán de ocho horas. Retrieved from El Comercio: https://www.elcomercio.com/actualidad/ecuador/cortes-luz-ecuador-ocho-horas.html

Grainger, C. A., & Zhang, F. (2019). Electricity shortages and manufacturing productivity in Pakistan. Energy Policy, 132, 1000–1008. https://doi.org/10.1016/j.enpol.2019.05.040

Hamatwi, E., Agee, J., & Davidson, I. (2016). Model of a Hybrid Distributed Generation System for a DC Nano-Grid. IEEE.

Hirsch, A., Parag, Y., & Guerrero, J. (2018). Microgrids: A review of technologies, key drivers, and outstanding issues. In Renewable and Sustainable Energy Reviews (Vol. 90, pp. 402–411). Elsevier Ltd. https://doi.org/10.1016/j.rser.2018.03.040

Jie, L. R., & Naayagi, R. (2019). Nanogrid for Energy Aware Buildings. IEEE PES GTD.

La Hora. (2024, April 19). Venta de generadores y baterías portátiles se incrementa en Ambato. Retrieved from La Hora: https://www.lahora.com.ec/tungurahua/destacado-tungurahua/venta-generadores-baterias-portatiles-incrementa-ambato/

Mooyman, J., & Wheeler, S. M. (2022). The feasibility of residential microgrids: a hypothetical neighborhood in Davis, California. Journal of Urbanism. https://doi.org/10.1080/17549175.2022.2116471

Ou, P., Huang, R., & Yao, X. (2016). Economic impacts of power shortage. Sustainability (Switzerland), 8(7). https://doi.org/10.3390/su8070687

Rajendran Pillai, V. R., Rajasekharan Nair Valsala, R., Raj, V., Petra, M. I., Krishnan Nair, S. K., & Mathew, S. (2023). Exploring the Potential of Microgrids in the Effective Utilisation of Renewable Energy: A Comprehensive Analysis of Evolving Themes and Future Priorities Using Main Path Analysis. In Designs (Vol. 7, Issue 3). MDPI. https://doi.org/10.3390/designs7030058

Renovables, M. d. (2018). Plan Maestro de Electricidad.

Ronnie J. Araneda-Cabrera, M. B. (2021). Short-term hydrological drought forecasting in the Pauteriver basin, Ecuadorian Andes. XUNTA DE GALICIA.

Syed, M. M., & Morrison, G. M. (2021). A rapid review on community connected microgrids. In Sustainability (Switzerland) (Vol. 13, Issue 12). MDPI AG. https://doi.org/10.3390/su13126753

Tsolakis, A. C., Bintoudi, A. D., Zyglakis, L., Zikos, S., Timplalexis, C., Bezas, N., Kitsikoudis, K., Ioannidis, D., & Tzovaras, D. (2020). Design and real-life deployment of a smart nanogrid: A greek case study. PECon 2020 - 2020 IEEE International Conference on Power and Energy, 321–326. https://doi.org/10.1109/PECon48942.2020.9314396

Vaca-Jiménez, S., Gerbens-Leenes, P. W., & Nonhebel, S. (2019). Water-electricity nexus in Ecuador: The dynamics of the electricity’s blue water footprint. Science of the Total Environment, 696. https://doi.org/10.1016/j.scitotenv.2019.133959

Vicente-Serrano, S. M., Quiring, S. M., Peña-Gallardo, M., Yuan, S., & Domínguez-Castro, F. (2020). A review of environmental droughts: Increased risk under global warming? In Earth-Science Reviews (Vol. 201). Elsevier B.V. https://doi.org/10.1016/j.earscirev.2019.102953

Villegas-Ch, W., & García-Ortiz, J. (2023). A Long Short-Term Memory-Based Prototype Model for Drought Prediction. Electronics (Switzerland), 12(18). https://doi.org/10.3390/electronics12183956

Xue, X., & Wang, Z. (2021). Impact of electricity shortages on productivity: Evidence from manufacturing industries. Energy Engineering: Journal of the Association of Energy Engineering, 118(4), 995–1008. https://doi.org/10.32604/EE.2021.014613

Yerasimou, Y., Kynigos, M., Efthymiou, V., & Georghiou, G. E. (2021). Design of a smart nanogrid for increasing energy efficiency of buildings †. Energies, 14(12). https://doi.org/10.3390/en14123683

Zakis, J., Suzdalenko, A., & Krievs, O. (2019). Feasibility Study of Renewable Energy Systems in Households. IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University.




DOI: https://doi.org/10.23857/pc.v9i7.7507

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/