Análisis de las principales tecnologías para el aprovechamiento de los residuos madereros
Resumen
La madera es un recurso renovable con propiedades destacadas, pero su creciente uso genera grandes cantidades de residuos, requiriendo soluciones sostenibles. El objetivo del presente trabajo fue identificar las principales tecnologías para aprovechar los residuos madereros. La revisión bibliográfica se realizó mediante la metodología PRISMA. La trituración permite obtener partículas de tamaño homogéneo, desde 1600 mm hasta 0 mm, adecuadas para aplicaciones industriales. La paletización mejora las propiedades de los residuos, alcanzando densidades de hasta 780 kg/m³ y poderes caloríficos de 19507 kJ/kg. La torrefacción produce biocarbones con valores energéticos de hasta 29,7 MJ/kg y un 52% de carbono fijo. La pirólisis genera biochar (25-35%), bio-aceite (37-44%) y gas no condensable (25-34%). La gasificación produce gas de síntesis con rendimientos de hasta 86,14% de conversión de carbono y 0,94 m³/kg de gas. La hidrólisis enzimática permite obtener hasta 51 g/L de bioetanol con una conversión del 91% de celulosa a etanol. El compostaje enriquece nutrientes como el nitrógeno (2,45%), y la digestión anaeróbica incrementa la producción de metano en un 75,8%. Los residuos madereros se pueden triturar, compactar, gasificar, pirolizar para obtener energía, hidrolizar y fermentar para producir bioetanol, y compostar y digerir anaeróbicamente para generar compost y biogás.
Palabras clave
Referencias
Adeola Fuwape, J. (2003). The impacts of forest industries and wood utilization on the environment. XLL World Forestry Congress, Quebéc City, Canada.
Alizadeh, P., Tabil, L. G., Adapa, P. K., Cree, D., Mupondwa, E., & Emadi, B. (2022). Torrefaction and Densification of Wood Sawdust for Bioenergy Applications. Fuels, 3(1), 152-175. https://doi.org/10.3390/fuels3010010
Arpi Trujillo, J. E., & Calderón Toral, C. S. (2010). Diseño de una maquina pelletizadora en base a la disponibilidad de residuos madereros de la ciudad de cuenca para su aprovechamiento energético [Universidad Politécnica Salesiana Facultad de Ingenierías]. https://dspace.ups.edu.ec/bitstream/123456789/832/13/UPS-CT001696.pdf
Ayala-Mendivil, N., & Sandoval, G. (2018). Bioenergía a partir de residuos forestales y de madera. Madera y Bosques, 24(0). https://doi.org/10.21829/myb.2018.2401877
Barbanera, M., Lascaro, E., Foschini, D., Cotana, F., & Buratti, C. (2018). Optimization of bioethanol production from steam exploded hornbeam wood (Ostrya carpinifolia) by enzymatic hydrolysis. Renewable Energy, 124, 136-143. https://doi.org/10.1016/j.renene.2017.07.022
Beltrán Martínez, L. (2011). Caracterización del producto obtenido en el pretratamiento de molienda de biomasa con molino de martillos bajo diferentes condiciones de operación Universidad de Zaragoza ]. Ecuador.
Ben-Iwo, J., Manovic, V., & Longhurst, P. (2016). Biomass resources and biofuels potential for the production of transportation fuels in Nigeria. Renewable and Sustainable Energy Reviews, 63, 172-192. https://doi.org/10.1016/j.rser.2016.05.050
Besserer, A., Troilo, S., Girods, P., Rogaume, Y., & Brosse, N. (2021). Cascading Recycling of Wood Waste: A Review. Polymers, 13(11).
Boro, M., Verma, A. K., Chettri, D., Yata, V. K., & Verma, A. K. (2022). Strategies involved in biofuel production from agro-based lignocellulose biomass. Environmental Technology & Innovation, 28, 102679. https://doi.org/10.1016/j.eti.2022.102679
Cahyanti, M. N., Doddapaneni, T. R. K. C., Madissoo, M., Pärn, L., Virro, I., & Kikas, T. (2021). Torrefaction of Agricultural and Wood Waste: Comparative Analysis of Selected Fuel Characteristics. Energies, 14(10).
Cano-Estrella, O., López-Sánchez, O., Guerrero-Posada, P., & San José-González, P. (2022). Evaluación de la calidad de triturado del marabú cortado con una cosechadora forestal. Revista Ingeniería Agrícola, 12(4). https://www.redalyc.org/articulo.oa?id=586272874008
Casanova Treto, P., Solís, K., & Carrillo, T. (2017). Propiedades térmicas y fisicoquímicas de pellets con fines energéticos elaborados a partir de residuos de aserradero. Ingeniería. Revista de la Universidad de Costa Rica, 27(1), 57-74. https://www.redalyc.org/articulo.oa?id=44170538004
Cetiner, I., & Shea, A. D. (2018). Wood waste as an alternative thermal insulation for buildings. Energy and Buildings, 168, 374-384. https://doi.org/10.1016/j.enbuild.2018.03.019
Chen, D., Li, Y., Cen, K., Luo, M., Li, H., & Lu, B. (2016). Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature. Bioresource Technology, 218, 780-788. https://doi.org/10.1016/j.biortech.2016.07.049
El Hage, M., Louka, N., Rezzoug, S.-A., Maugard, T., Sablé, S., Koubaa, M., Debs, E., & Maache-Rezzoug, Z. (2023). Bioethanol Production from Woody Biomass: Recent Advances on the Effect of Pretreatments on the Bioconversion Process and Energy Yield Aspects. Energies, 16(13).
FAO. Consumption of primary processed wood products predicted to grow 37 percent by 2050. Food and Agriculture Organization of the United Nations (FAO) 2022 [citado: 7 junio 2024]; [Online] Recuperado: https://www.fao.org/newsroom/detail/consumption-of-primary-processed-wood-products-predicted-to-grow-37-percent-by-2050/en#:~:text=Consumption%20of%20primary%20processed%20wood%20products%20predicted%20to%20grow%2037%20percent%20by%202050,-FAO%20publishes%20Global&text=Rome%20%E2%80%93%20Overall%20consumption%20of%20primary,United%20Nations%20(FAO)%20said.
Ferrari, F., Striani, R., Fico, D., Alam, M. M., Greco, A., & Esposito Corcione, C. (2022). An Overview on Wood Waste Valorization as Biopolymers and Biocomposites: Definition, Classification, Production, Properties and Applications. Polymers, 14(24). https://doi.org/10.3390/polym14245519
Gaitán-Álvarez, J., & Moya, R. (2016). Características y propiedades de pellets de biomasa torrefaccionada de Gmelina arborea y Dipterix panamensis a diferentes tiempos. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 22(3), 325-337. https://doi.org/10.5154/r.rchscfa.2015.09.044
Girods, P., Dufour, A., Rogaume, Y., Rogaume, C., & Zoulalian, A. (2008). Pyrolysis of wood waste containing urea-formaldehyde and melamine-formaldehyde resins. Journal of Analytical and Applied Pyrolysis, 81(1), 113-120. https://doi.org/10.1016/j.jaap.2007.09.007
González Hassig, A., García Ubaque, C. A., & Talero Rojas, G. F. (2014). Estudio de planta piloto para peletización de residuos madereros y su utilización como combustible en hornos ladrilleros. Tecnura, 18(40), 62-70. https://www.redalyc.org/articulo.oa?id=257030546006
Hasan, K. M. F., Horváth, P. G., & Alpár, T., Chapter 4 - Nanotechnology for waste wood recycling, Elsevier, 2022. p. 61-80.https://doi.org/10.1016/B978-0-323-85835-9.00014-3
Hosokai, S., Matsuoka, K., Kuramoto, K., & Suzuki, Y. (2016). Practical estimation of reaction heat during the pyrolysis of cedar wood. Fuel Processing Technology, 154, 156-162. https://doi.org/10.1016/j.fuproc.2016.08.027
Huang, G. F., Wong, J. W. C., Wu, Q. T., & Nagar, B. B. (2004). Effect of C/N on composting of pig manure with sawdust. Waste Management, 24(8), 805-813. https://doi.org/10.1016/j.wasman.2004.03.011
Jeong-Ik, O., Jechan, L., Kun-Yi Andrew, L., Eilhann, E. K., & Yiu Fai, T. (2018). Biogas production from food waste via anaerobic digestion with wood chips. Energy & Environment, 29(8), 1365-1372. https://doi.org/10.1177/0958305X18777234 (Energy & Environment)
Kallio, A. M. I., Chudy, R., & Solberg, B. (2018). Prospects for producing liquid wood-based biofuels and impacts in the wood using sectors in Europe. Biomass and Bioenergy, 108, 415-425. https://doi.org/10.1016/j.biombioe.2017.11.022
Kislukhina, I. A., & Rybakova, O. G. (2018). Gasification of Wood and Non-wood Waste of Timber Production as Perspectives for Development of Bioenergy. IOP Conference Series: Materials Science and Engineering, 327(2), 022059. https://doi.org/10.1088/1757-899X/327/2/022059
Koponen, K., & Hannula, I. (2017). GHG emission balances and prospects of hydrogen enhanced synthetic biofuels from solid biomass in the European context. Applied Energy, 200, 106-118. https://doi.org/10.1016/j.apenergy.2017.05.014
Kulikova, Y., Sukhikh, S., Babich, O., Yuliya, M., Krasnovskikh, M., & Noskova, S. (2022). Feasibility of Old Bark and Wood Waste Recycling. Plants, 11(12).
Lee, J. T. E., Ok, Y. S., Song, S., Dissanayake, P. D., Tian, H., Tio, Z. K., Cui, R., Lim, E. Y., Jong, M.-C., Hoy, S. H., Lum, T. Q. H., Tsui, T.-H., Yoon, C. S., Dai, Y., Wang, C.-H., Tan, H. T. W., & Tong, Y. W. (2021). Biochar utilisation in the anaerobic digestion of food waste for the creation of a circular economy via biogas upgrading and digestate treatment. Bioresource Technology, 333, 125190. https://doi.org/10.1016/j.biortech.2021.125190
Li, J., Dou, B., Zhang, H., Zhang, H., Chen, H., Xu, Y., & Wu, C. (2021). Pyrolysis characteristics and non-isothermal kinetics of waste wood biomass. Energy, 226, 120358. https://doi.org/10.1016/j.energy.2021.120358
Li, R., Tan, W., Zhao, X., Dang, Q., Song, Q., Xi, B., & Zhang, X. (2019). Evaluation on the Methane Production Potential of Wood Waste Pretreated with NaOH and Co-Digested with Pig Manure. Catalysts, 9(6).
Maier, D. (2021). Building Materials Made of Wood Waste a Solution to Achieve the Sustainable Development Goals. Materials (Basel), 14(24). https://doi.org/10.3390/ma14247638
Mardiana, S., Azhari, N. J., Ilmi, T., & Kadja, G. T. M. (2022). Hierarchical zeolite for biomass conversion to biofuel: A review. Fuel, 309, 122119. https://doi.org/10.1016/j.fuel.2021.122119
McMahon, V., Garg, A., Aldred, D., Hobbs, G., Smith, R., & Tothill, I. E. (2008). Composting and bioremediation process evaluation of wood waste materials generated from the construction and demolition industry. Chemosphere, 71(9), 1617-1628. https://doi.org/10.1016/j.chemosphere.2008.01.031
Mehmood, S., Khaliq, A., & Ranjha, S., The use of post consumer wood waste for the production of wood plastic composites: A Review, Venice, Italy, Third International Symposium on Energy from Biomass and Waste, 2010. p. 1-16.https://doi.org/10.13140/2.1.1921.3128
Mian, I., Li, X., Jian, Y., Dacres, O. D., Zhong, M., Liu, J., Ma, F., & Rahman, N. (2019). Kinetic study of biomass pellet pyrolysis by using distributed activation energy model and Coats Redfern methods and their comparison. Bioresource Technology, 294, 122099. https://doi.org/10.1016/j.biortech.2019.122099
Milano, J., Ong, H. C., Masjuki, H. H., Chong, W. T., Lam, M. K., Loh, P. K., & Vellayan, V. (2016). Microalgae biofuels as an alternative to fossil fuel for power generation. Renewable and Sustainable Energy Reviews, 58, 180-197. https://doi.org/10.1016/j.rser.2015.12.150
Mokrzycki, J., Gazińska, M., Fedyna, M., Karcz, R., Lorenc-Grabowska, E., & Rutkowski, P. (2020). Pyrolysis and torrefaction of waste wood chips and cone-like flowers derived from black alder (Alnus glutinosa L. Gaertn.) for sustainable solid fuel production. Biomass and Bioenergy, 143, 105842. https://doi.org/10.1016/j.biombioe.2020.105842
Morais, Â., Soares, A. A., & Rouboa, A. (2022). A numerical study of the urban wood waste gasification. Energy Reports, 8, 1053-1062. https://doi.org/10.1016/j.egyr.2022.07.083
Ong, H. C., Chen, W.-H., Farooq, A., Gan, Y. Y., Lee, K. T., & Ashokkumar, V. (2019). Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review. Renewable and Sustainable Energy Reviews, 113, 109266. https://doi.org/10.1016/j.rser.2019.109266
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., & Tetzlaff, J. M. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews [en linea]. BMJ, 372, 71. https://doi.org/10.1136/bmj.n71
Pandey, S. (2022). Wood waste utilization and associated product development from under-utilized low-quality wood and its prospects in Nepal. SN Applied Sciences, 4(6), 168. https://doi.org/10.1007/s42452-022-05061-5
Prins, M. J., Ptasinski, K. J., & Janssen, F. J. J. G. (2006). Torrefaction of wood: Part 1. Weight loss kinetics. Journal of Analytical and Applied Pyrolysis, 77(1), 28-34. https://doi.org/10.1016/j.jaap.2006.01.002
Romaní, A., Garrote, G., Ballesteros, I., & Ballesteros, M. (2013). Second generation bioethanol from steam exploded Eucalyptus globulus wood. Fuel, 111, 66-74. https://doi.org/10.1016/j.fuel.2013.04.076
Safarian, S., Ebrahimi Saryazdi, S. M., Unnthorsson, R., & Richter, C. (2021). Gasification of Woody Biomasses and Forestry Residues: Simulation, Performance Analysis, and Environmental Impact. Fermentation, 7(2), 1-14.
Saha, P., & Handique, S., Chapter 26 - A review on municipal solid wastes and their associated problems and solutions (waste-to-energy recovery and nano-treatment) with special reference to India, Elsevier, 2023. p. 601-623.https://doi.org/10.1016/B978-0-323-90463-6.00004-X
Sahoo, G., Sharma, A., & Chandra Dash, A. (2022). Biomass from trees for bioenergy and biofuels – A briefing paper. Materials Today: Proceedings, 65, 461-467. https://doi.org/10.1016/j.matpr.2022.02.639
Sankaran, R., Show, P. L., Nagarajan, D., & Chang, J.-S., Chapter 19 - Exploitation and Biorefinery of Microalgae, Elsevier, 2018. p. 571-601.https://doi.org/10.1016/B978-0-444-63992-9.00019-7
Sayara, T., Basheer-Salimia, R., Hawamde, F., & Sánchez, A. (2020). Recycling of Organic Wastes through Composting: Process Performance and Compost Application in Agriculture. Agronomy, 10(11), 1838. https://doi.org/10.3390/agronomía10111838
Sharma, D., Yadav, K. D., & Kumar, S. (2018). Role of sawdust and cow dung on compost maturity during rotary drum composting of flower waste. Bioresource Technology, 264, 285-289. https://doi.org/10.1016/j.biortech.2018.05.091
Sisniega Maza, Y. (2021). Estudio de la reducción de tamaño de distintas biomasas residuales en un molino de bolas planetario Universidad de Cantabria].
Teacă, C. A., Shahzad, A., Duceac, I. A., & Tanasă, F. (2023). The Re-/Up-Cycling of Wood Waste in Wood-Polymer Composites (WPCs) for Common Applications. Polymers (Basel), 15(16). https://doi.org/10.3390/polym15163467
Tenorio-Monge, C., Moya-Roque, R., Valaert, J., & Tomazello-Filho, M. (2016). Potencial de fabricación de pellets de residuos forestales de Cupressus lusitanica y Tectona grandis en Costa Rica. Revista Tecnología en Marcha, 29(2), p. 95-109. https://doi.org/10.18845/tm.v29i2.2694
Urrútia, G., & Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis [en linea]. Medicina Clínica, vol 135, no 11, 507-511. https://doi.org/10.1016/j.medcli.2010.01.015
Villacis Pila, Y. J. (2018). Modelación matemática para la molienda de la biomasa del pigüe (Piptocoma discolor) con fines energéticos en la provincia de Pastaza. Universidad Estatal Amazónica].
Vitolina, S., Shulga, G., Neiberte, B., Jaunslavietis, J., Verovkins, A., & Betkers, T. (2022). Characteristics of the Waste Wood Biomass and Its Effect on the Properties of Wood Sanding Dust/Recycled PP Composite. Polymers (Basel), 14(3). https://doi.org/10.3390/polym14030468
Wang, N., Zhan, H., Zhuang, X., Xu, B., Yin, X., Wang, X., & Wu, C. (2020). Torrefaction of waste wood-based panels: More understanding from the combination of upgrading and denitrogenation properties. Fuel Processing Technology, 206, 106462. https://doi.org/10.1016/j.fuproc.2020.106462
Xie, J., Zhu, K., Zhang, Z., Chen, X., Lin, Y., Hu, J., Xiong, Y., Zhang, Y., Huang, Z., & Huang, H. (2023). Chemical Looping Gasification of Wood Waste Using NiO-Modified Hematite as an Oxygen Carrier. Energies, 16(4), 1-16.
Zambrano, L., Moreno, P., Muñoz, F., Durán, J., Garay, D., & Valero, S. (2013). Tableros de partículas fabricados con residuos industriales de madera de Pinus patula. Madera y Bosques, 19(3), 65-80. https://www.redalyc.org/articulo.oa?id=61728976005
Zhang, C., Yang, R., Sun, M., Zhang, S., He, M., Tsang, D. C. W., & Luo, G. (2022). Wood waste biochar promoted anaerobic digestion of food waste: focusing on the characteristics of biochar and microbial community analysis. Biochar, 4(1), 62. https://doi.org/10.1007/s42773-022-00187-6
Zhang, Y., Cui, Y., Chen, P., Liu, S., Zhou, N., Ding, K., Fan, L., Peng, P., Min, M., Cheng, Y., Wang, Y., Wan, Y., Liu, Y., Li, B., & Ruan, R., Chapter 14 - Gasification Technologies and Their Energy Potentials, Elsevier, 2019. p. 193-206.https://doi.org/10.1016/B978-0-444-64200-4.00014-1
DOI: https://doi.org/10.23857/pc.v9i7.7503
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/