Análisis de un medidor bidireccional utilizado en un sistema de generación fotovoltaico conectado a la red

Danny Joel Changoluisa Toapanta, Paco Jovanni Vásquez Carrera, William Armando Hidalgo Osorio

Resumen


En esta investigación se presenta una revisión sistemática de la literatura sobre el análisis de medidores bidireccionales utilizados en sistemas de generación fotovoltaica conectados a la red eléctrica. Siguiendo el Método Kitchenham, se realizó una búsqueda exhaustiva en bases de datos académicas reconocidas, identificando 27 estudios primarios relevantes. Los principales desafíos identificados incluyeron la precisión de las mediciones en condiciones variables, la mitigación de armónicos y desequilibrios, la sincronización y el desfase, y la integración en redes inteligentes. Se exploraron técnicas propuestas, como algoritmos de sincronización, compensación de desequilibrios y procesamiento de señales, los hallazgos revelaron aspectos relacionados que podrían ser relevantes, proporcionando información valiosa sobre enfoques, desafíos y limitaciones en proyectos de ingeniería de software y sistemas de potencia, También se podría complementar estos hallazgos con una revisión de la literatura de hace aproximadamente 10 años atrás para hacer un análisis completo del tema planteado en el presente artículo.


Palabras clave


Medidores bidireccionales; Sistemas fotovoltaicos; Redes eléctricas; Revisión sistemática; Método Kitchenham.

Texto completo:

PDF HTML

Referencias


O. O. Yolcan, “World energy outlook and state of renewable energy: 10-Year evaluation,” Innovation and Green Development, vol. 2, no. 4, p. 100070, Dec. 2023, doi: 10.1016/J.IGD.2023.100070.

A. Jäger-Waldau, “Snapshot of photovoltaics – February 2022,” EPJ Photovoltaics, vol. 13, p. 9, 2022, doi: 10.1051/EPJPV/2022010.

E. Kabalcı, “Review on novel single-phase grid-connected solar inverters: Circuits and control methods,” Solar Energy, vol. 198, pp. 247–274, Mar. 2020, doi: 10.1016/J.SOLENER.2020.01.063.

A. Darwish, S. Alotaibi, and M. A. Elgenedy, “Current-Source Single-Phase Module Integrated Inverters for PV Grid-Connected Applications,” IEEE Access, vol. 8, pp. 53082–53096, 2020, doi: 10.1109/ACCESS.2020.2981552.

M. A. B. Siddique, M. A. Khan, A. Asad, A. U. Rehman, R. M. Asif, and S. U. Rehman, “Maximum power point tracking with modified incremental conductance technique in grid-connected PV array,” CITISIA 2020 - IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, Proceedings, Nov. 2020, doi: 10.1109/CITISIA50690.2020.9371803.

A. Belay Kebede and G. Biru Worku, “Comprehensive review and performance evaluation of maximum power point tracking algorithms for photovoltaic system,” Global Energy Interconnection, vol. 3, no. 4, pp. 398–412, Aug. 2020, doi: 10.1016/J.GLOEI.2020.10.008.

N. Rouibah et al., “Experimental Assessment of Perturb & Observe, Incremental Conductance and Hill Climbing MPPTs for Photovoltaic Systems,” Lecture Notes in Electrical Engineering, vol. 681, pp. 461–467, 2021, doi: 10.1007/978-981-15-6259-4_49.

M. E. Meral and D. Çelík, “A comprehensive survey on control strategies of distributed generation power systems under normal and abnormal conditions,” Annu Rev Control, vol. 47, pp. 112–132, Jan. 2019, doi: 10.1016/J.ARCONTROL.2018.11.003.

M. A. Khan, A. Haque, K. V. S. Bharath, and S. Mekhilef, “Single phase transformerless photovoltaic inverter for grid connected systems - an overview,” International Journal of Power Electronics, vol. 13, no. 4, pp. 434–480, 2021, doi: 10.1504/IJPELEC.2021.115581.

R. Ahmad, A. F. Murtaza, and H. A. Sher, “Power tracking techniques for efficient operation of photovoltaic array in solar applications – A review,” Renewable and Sustainable Energy Reviews, vol. 101, pp. 82–102, Mar. 2019, doi: 10.1016/J.RSER.2018.10.015.

M. Derbeli, C. Napole, O. Barambones, J. Sanchez, I. Calvo, and P. Fernández-Bustamante, “Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications,” Energies 2021, Vol. 14, Page 7806, vol. 14, no. 22, p. 7806, Nov. 2021, doi: 10.3390/EN14227806.

S. Jadidi, H. Badihi, and Y. Zhang, “A Review on Operation, Control and Protection of Smart Microgrids,” 2019 IEEE 2nd International Conference on Renewable Energy and Power Engineering, REPE 2019, pp. 100–104, Nov. 2019, doi: 10.1109/REPE48501.2019.9025113.

A. Abhishek, A. Ranjan, S. Devassy, B. Kumar Verma, S. K. Ram, and A. K. Dhakar, “Review of hierarchical control strategies for DC microgrid,” IET Renewable Power Generation, vol. 14, no. 10, pp. 1631–1640, Jul. 2020, doi: 10.1049/IET-RPG.2019.1136.

Z. Tang, Y. Yang, and F. Blaabjerg, “Power electronics: The enabling technology for renewable energy integration,” CSEE Journal of Power and Energy Systems, vol. 8, no. 1, pp. 39–52, Jan. 2022, doi: 10.17775/CSEEJPES.2021.02850.

M. Mehrasa, E. Pouresmaeil, A. Sepehr, B. Pournazarian, and J. P. S. Catalão, “Control of power electronics-based synchronous generator for the integration of renewable energies into the power grid,” International Journal of Electrical Power & Energy Systems, vol. 111, pp. 300–314, Oct. 2019, doi: 10.1016/J.IJEPES.2019.04.016.

M. E. T. Souza Junior and L. C. G. Freitas, “Power Electronics for Modern Sustainable Power Systems: Distributed Generation, Microgrids and Smart Grids—A Review,” Sustainability 2022, Vol. 14, Page 3597, vol. 14, no. 6, p. 3597, Mar. 2022, doi: 10.3390/SU14063597.

H. Abouobaida and Y. Abouelmahjoub, “New Diagnosis and Fault-Tolerant Control Strategy for Photovoltaic System,” International Journal of Photoenergy, vol. 2021, no. 1, p. 8075165, Jan. 2021, doi: 10.1155/2021/8075165.

L. Ortiz, J. W. Gonzalez, L. B. Gutierrez, and O. Llanes-Santiago, “A review on control and fault-tolerant control systems of AC/DC microgrids,” HLY, vol. 6, p. e04799, 2020, doi: 10.1016/j.heliyon. 2020.e04799.

A. A. Patil and Y. Bhosale, “Development of Bi-directional energy meter for a grid-connected PV system with power quality improvement using D-STATCOM,” 8th International Conference on Computation of Power, Energy, Information and Communication, ICCPEIC 2019, pp. 130–134, Mar. 2019, doi: 10.1109/ICCPEIC45300.2019.9082363.

I. Høiaas, K. Grujic, A. G. Imenes, I. Burud, E. Olsen, and N. Belbachir, “Inspection and condition monitoring of large-scale photovoltaic power plants: A review of imaging technologies,” Renewable and Sustainable Energy Reviews, vol. 161, p. 112353, Jun. 2022, doi: 10.1016/J.RSER.2022.112353.

M. A. Khan et al., “Experimental and simulation analysis of grid-connected rooftop photovoltaic system for a large-scale facility,” Sustainable Energy Technologies and Assessments, vol. 53, p. 102773, Oct. 2022, doi: 10.1016/J.SETA.2022.102773.

K. N. Aliyu, I. O. Habiballah, and S. Rehman, “Technological Assessment of Grid Connected Solar Photovoltaic System; Review,” IJERT, vol. 9, no. 11, Nov. 2020, Accessed: Jun. 11, 2024. [Online]. Available: https://www.pv-magazine.com/2019/04/02/global-cumulative-pv-

A. KhareSaxena, S. Saxena, and K. Sudhakar, “Energy performance and loss analysis of 100 kWp grid-connected rooftop solar photovoltaic system,” https://doi.org/10.1177/0143624421994224, vol. 42, no. 4, pp. 485–500, Mar. 2021, doi: 10.1177/0143624421994224.

R. Kallel and G. Boukettaya, “An energy cooperative system concept of DC grid distribution and PV system for supplying multiple regional AC smart grid connected houses,” Journal of Building Engineering, vol. 56, p. 104737, Sep. 2022, doi: 10.1016/J.JOBE.2022.104737.

P. Ezhilarasi and L. Ramesh, “Review on smart energy meter for low cost design,” Proceedings - 2019 5th International Conference on Computing, Communication Control and Automation, ICCUBEA 2019, Sep. 2019, doi: 10.1109/ICCUBEA47591.2019.9128805.

M. Z. U. Abideen, O. Ellabban, F. Ahmad, and L. Al-Fagih, “An Enhanced Approach for Solar PV Hosting Capacity Analysis in Distribution Networks,” IEEE Access, vol. 10, pp. 120563–120577, 2022, doi: 10.1109/ACCESS.2022.3221944.

H. Sadeghian and Z. Wang, “A novel impact-assessment framework for distributed PV installations in low-voltage secondary networks,” Renew Energy, vol. 147, pp. 2179–2194, Mar. 2020, doi: 10.1016/J.RENENE.2019.09.117.

C. Hou, C. Zhang, P. Wang, and S. Liu, “Renewable energy based low-voltage distribution network for dynamic voltage regulation,” Results in Engineering, vol. 21, p. 101701, Mar. 2024, doi: 10.1016/J.RINENG.2023.101701.

R. Saeedi, S. K. Sadanandan, A. K. Srivastava, K. L. Davies, and A. H. Gebremedhin, “An Adaptive Machine Learning Framework for Behind-the-Meter Load/PV Disaggregation,” IEEE Trans Industr Inform, vol. 17, no. 10, pp. 7060–7069, Oct. 2021, doi: 10.1109/TII.2021.3060898.

M. S. Ibrahim, W. Dong, and Q. Yang, “Machine learning driven smart electric power systems: Current trends and new perspectives,” Appl Energy, vol. 272, p. 115237, Aug. 2020, doi: 10.1016/J.APENERGY.2020.115237.

M. Z. Farahmand, M. E. Nazari, S. Shamlou, and M. Shafie-Khah, “The Simultaneous Impacts of Seasonal Weather and Solar Conditions on PV Panels Electrical Characteristics,” Energies 2021, Vol. 14, Page 845, vol. 14, no. 4, p. 845, Feb. 2021, doi: 10.3390/EN14040845.

M. Moghbel et al., “Output power fluctuations of distributed photovoltaic systems across an isolated power system: insights from high-resolution data,” IET Renewable Power Generation, vol. 14, no. 19, pp. 3989–3995, Dec. 2020, doi: 10.1049/IET-RPG.2020.0546.

B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, “Systematic literature reviews in software engineering – A systematic literature review,” Inf Softw Technol, vol. 51, no. 1, pp. 7–15, Jan. 2009, doi: 10.1016/J.INFSOF.2008.09.009.

S. Odilova, Z. Sharipova, and S. Azam, “Investing in the future: a systematic literature review on renewable energy and its impact on financial returns,” International Journal of Energy Economics and Policy, vol. 13, no. 4, pp. 329–337, 2023, doi: 10.32479/ijeep.14375.

M. Abdelmalak, V. Venkataramanan, and R. MacWan, “A Survey of Cyber-Physical Power System Modeling Methods for Future Energy Systems,” IEEE Access, vol. 10, pp. 99875–99896, 2022, doi: 10.1109/ACCESS.2022.3206830.




DOI: https://doi.org/10.23857/pc.v9i6.7462

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/