Analysis of the automated information system for water requirements of cocoa cultivation in Naranjal city, Ecuador
Resumen
Este artículo analiza un innovador sistema de información automatizado diseñado para optimizar el uso del agua para el cultivo de cacao en la ciudad de Naranjal, Ecuador. Al abordar los desafíos del cambio climático y la sostenibilidad agrícola, el estudio evalúa el rendimiento del sistema utilizando un conjunto de datos simulados y el modelo Maxent, destacando su impresionante precisión predictiva del 92%. La investigación subraya los importantes beneficios socioeconómicos del sistema, evidenciados por una encuesta entre agricultores locales, el 85% de los cuales encontró que el sistema era fácil de usar y eficaz para mejorar sus prácticas de riego. Un sustancial 75% anticipó un aumento en la producción de cacao debido a una mejor gestión del agua. El estudio también explora el impacto ambiental del sistema, demostrando una reducción del 30% en la erosión del suelo y una notable disminución en la huella de carbono del cultivo de cacao, lo que subraya el potencial para reducir el desperdicio de agua y el uso de energía en la agricultura. Los hallazgos iluminan las implicaciones más amplias del empleo de tecnología avanzada en la agricultura, sugiriendo un camino hacia prácticas agrícolas más sostenibles y eficientes que pueden replicarse en contextos agrícolas similares a nivel mundial.
Palabras clave
Referencias
Akpoti, K., Dossou-Yovo, E. R., Zwart, S. J., & Kiepe, P. (2021). The potential for expansion of irrigated rice under alternate wetting and drying in Burkina Faso. Agricultural Water Management, 247. https://doi.org/10.1016/j.agwat.2021.106758
Akrofi-Atitianti, F., Ifejika Speranza, C., Bockel, L., & Asare, R. (2018). Assessing Climate Smart Agriculture and Its Determinants of Practice in Ghana: A Case of the Cocoa Production System. Land, 7(1). https://doi.org/10.3390/land7010030
Al-Mulali, U., Weng-Wai, C., Sheau-Ting, L., & Mohammed, A. H. (2015). Investigating the environmental Kuznets curve (EKC) hypothesis by utilizing the ecological footprint as an indicator of environmental degradation. Ecological Indicators, 48. https://doi.org/10.1016/j.ecolind.2014.08.029
Asare-Nuamah, P., & Mandaza, M. S. (2020). Climate Change Adaptation Strategies and Food Security of Smallholder Farmers in the Rural Adansi North District of Ghana. In Handbook of Climate Change Management. https://doi.org/10.1007/978-3-030-22759-3_142-1
Asare-Nuamah, P., & Mandaza, M. S. (2021). Climate Change Adaptation Strategies and Food Security of Smallholder Farmers in the Rural Adansi North District of Ghana. In Handbook of Climate Change Management: Research, Leadership, Transformation (Vol. 1). https://doi.org/10.1007/978-3-030-57281-5_142
Campana, P. E., Leduc, S., Kim, M., Olsson, A., Zhang, J., Liu, J., Kraxner, F., McCallum, I., Li, H., & Yan, J. (2017). Suitable and optimal locations for implementing photovoltaic water pumping systems for grassland irrigation in China. Applied Energy, 185, 1879–1889. https://doi.org/10.1016/j.apenergy.2016.01.004
Dianawati, Indrasti, N. S., Ismayana, A., Yuliasi, I., & Djatna, T. (2023). Carbon Footprint Analysis of Cocoa Product Indonesia Using Life Cycle Assessment Methods. Journal of Ecological Engineering, 24(7). https://doi.org/10.12911/22998993/164750
Duarte, Y. C. N., & Sentelhas, P. C. (2020). NASA/POWER and DailyGridded weather datasets—how good they are for estimating maize yields in Brazil? International Journal of Biometeorology, 64(3). https://doi.org/10.1007/s00484-019-01810-1
Duker, A. E. C., Tadesse, T. M., Soentoro, T., de Fraiture, C., & Kemerink-Seyoum, J. S. (2019). The implications of ignoring smallholder agriculture in climate-financed forestry projects: empirical evidence from two REDD+ pilot projects. Climate Policy, 19(sup1). https://doi.org/10.1080/14693062.2018.1532389
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1). https://doi.org/10.1111/j.1472-4642.2010.00725.x
Federman, R., Carmel, Y., & Kent, R. (2013). Irrigation as an important factor in species distribution models. Basic and Applied Ecology, 14(8). https://doi.org/10.1016/j.baae.2013.09.005
Ghaffar, K., Salleh, U. F. H. M., Gapar, N., Ismail, R., Hassan, S. B., Sarbini, M. A. M., & Lim, T. H. (2016). Toward stable soil control system for sustainable water irrigation system in agriculture. Advanced Science Letters, 22(10). https://doi.org/10.1166/asl.2016.7001
Guo, Y., Starman, T., & Hall, C. (2019). Growth, quality, and economic value responses of bedding plants to reduced water usage. HortScience, 54(5). https://doi.org/10.21273/HORTSCI13793-18
Jones, E. O., Tham-Agyekum, E. K., Ankuyi, F., Ankrah, D. A., Akaba, S., Shafiwu, A. B., & Richard, F. N. (2023). Mobile agricultural extension delivery and climate-smart agricultural practices in a time of a pandemic: Evidence from southern Ghana. Environmental and Sustainability Indicators, 19. https://doi.org/10.1016/j.indic.2023.100274
Jones, P., Wynn, M., Hillier, D., & Comfort, D. (2017). The Sustainable Development Goals and Information and Communication Technologies. Indonesian Journal of Sustainability Accounting and Management, 1(1). https://doi.org/10.28992/ijsam.v1i1.22
Koondhar, M. A., Shahbaz, M., Memon, K. A., Ozturk, I., & Kong, R. (2021). A visualization review analysis of the last two decades for environmental Kuznets curve “EKC” based on co-citation analysis theory and pathfinder network scaling algorithms. Environmental Science and Pollution Research, 28(13). https://doi.org/10.1007/s11356-020-12199-5
Köppen, W. (1918). Klassifikation der Klimate nach Temperatur, Niederschlag und Jahresablauf. Petermanns Geographische Mitteilungen.
Lahive, F., Hadley, P., & Daymond, A. J. (2019). The physiological responses of cacao to the environment and the implications for climate change resilience. A review. In Agronomy for Sustainable Development (Vol. 39, Issue 1). https://doi.org/10.1007/s13593-018-0552-0
Levidow, L., Zaccaria, D., Maia, R., Vivas, E., Todorovic, M., & Scardigno, A. (2014). Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agricultural Water Management, 146, 84–94. https://doi.org/10.1016/j.agwat.2014.07.012
Machida, K., Furlan Goncalves Dias, F., Fan, Z., & De Moura Bell, J. M. L. N. (2022). From a Single-Stage to a Two-Stage Countercurrent Extraction of Lipids and Proteins from Full-Fat Chickpea Flour: Maximizing Process Extractability and Economic Feasibility. Processes, 10(11). https://doi.org/10.3390/pr10112349
Mahmood, H., Furqan, M., Hassan, M. S., & Rej, S. (2023). The Environmental Kuznets Curve (EKC) Hypothesis in China: A Review. In Sustainability (Switzerland) (Vol. 15, Issue 7). https://doi.org/10.3390/su15076110
Mariyono, J. (2020). Improvement of economic and sustainability performance of agribusiness management using ecological technologies in Indonesia. International Journal of Productivity and Performance Management, 69(5). https://doi.org/10.1108/IJPPM-01-2019-0036
Mohammad, N., Rahaman, S. M., Khatun, M., Rajkumar, M., Garai, S., Ranjan, A., & Tiwari, S. (2023). Teak (Tectona grandis L.f.) demonstrates robust adaptability to climate change scenarios in central India. Vegetos, 36(3). https://doi.org/10.1007/s42535-022-00444-w
Ortiz-Rodríguez, O. O., Villamizar-Gallardo, R. A., Naranjo-Merino, C. A., García-Caceres, R. G., & Castañeda-Galvís, M. T. (2016). Carbon footprint of the colombian cocoa production. Engenharia Agricola, 36(2). https://doi.org/10.1590/1809-4430-Eng.Agric.v36n2p260-270/2016
Ribeiro, J. M. P., Bocasanta, S. L., Ávila, B. O., Magtoto, M., Jonck, A. V., Gabriel, G. M., & Guerra, J. B. S. O. de A. (2018). The adoption of strategies for sustainable cities: A comparative study between Seattle and Florianopolis legislation for energy and water efficiency in buildings. Journal of Cleaner Production, 197. https://doi.org/10.1016/j.jclepro.2018.06.176
Rodrigues, G. C., & Braga, R. P. (2021). Evaluation of nasa power reanalysis products to estimate daily weather variables in a hot summer mediterranean climate. Agronomy, 11(6). https://doi.org/10.3390/agronomy11061207
Sarvina, Y., June, T., Sutjahjo, S. H., Nurmalina, R., & Surmaini, E. (2023). Projection of Robusta Coffee’s Climate Suitability for Sustainable Indonesian Coffee Production. International Journal of Sustainable Development and Planning, 18(4). https://doi.org/10.18280/ijsdp.180409
Simmons, A. T., Perovic, D. J., & Roth, G. (2022). Making waves – Are water scarcity footprints of irrigated agricultural commodities suitable to inform consumer decisions? Agricultural Water Management, 268. https://doi.org/10.1016/j.agwat.2022.107689
Sumaryanto, S., Susilowati, S. H., Saptana, S., Sayaka, B., Suryani, E., Agustian, A., Ashari, A., Purba, H. J., Sumedi, S., Dermoredjo, S. K., Purwantini, T. B., Yofa, R. D., & Pasaribu, S. M. (2023). Technical efficiency changes of rice farming in the favorable irrigated areas of Indonesia. Open Agriculture, 8(1). https://doi.org/10.1515/opag-2022-0207
Ten Hoopen, G. M., Motilal, L. A., & Bekele, F. L. (2019). The role of agroforestry systems in reconciling food and cocoa (Theobroma cacao l.) and coffee (coffea spp. l.) production in a changing environment. In Tropical Agriculture (Vol. 96). https://doi.org/10.37234/TA96012019/00009601011
Velazquez-Gonzalez, R. S., Garcia-Garcia, A. L., Ventura-Zapata, E., Barceinas-Sanchez, J. D. O., & Sosa-Savedra, J. C. (2022). A Review on Hydroponics and the Technologies Associated for Medium-and Small-Scale Operations. In Agriculture (Switzerland) (Vol. 12, Issue 5). https://doi.org/10.3390/agriculture12050646
WWAP. (2017). WWAP (United Nations World Water Assessment Programme). In The United Nations World Water Development Report. Wastewater. The Untapped Resource.
Yamoah, F. A., Kaba, J. S., Amankwah-Amoah, J., & Acquaye, A. (2020). Stakeholder Collaboration in Climate-Smart Agricultural Production Innovations: Insights from the Cocoa Industry in Ghana. Environmental Management, 66(4). https://doi.org/10.1007/s00267-020-01327-z
DOI: https://doi.org/10.23857/pc.v9i4.6977
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/