Estudio del uso de drones para el análisis termográfico en redes de distribución eléctrica
Resumen
Este artículo presenta un estudio donde se hace una revisión de literatura de investigaciones experimentales para caracterizar el uso de drones con cámaras térmicas en la inspección de redes eléctricas de distribución. Estos estudios analizaron en campo el desempeño de cuatro configuraciones de drones comerciales con sensores infrarrojos sobre tramos de red con condiciones reales de operación. Los resultados evidenciaron mejoras significativas respecto a inspecciones manuales en términos de eficiencia de exploración, resolución termográfica y recursos analíticos para detección de fallas tempranas. El mapeo térmico detallado de la infraestructura facilitó la identificación automatizada de conexiones y puntos calientes, paneles solares defectuosos y aislamientos deteriorados para mantenimiento predictivo. Se discuten los principales desafíos existentes para la adopción masiva de esta tecnología emergente en la práctica real. Los hallazgos proveen una guía actualizada para explotar los beneficios de los drones con termografía infrarroja en la gestión de activos de distribución eléctrica.
Palabras clave
Referencias
G. L. Aschidamini et al., “Expansion Planning of Power Distribution Systems Considering Reliability: A Comprehensive Review,” Energies 2022, Vol. 15, Page 2275, vol. 15, no. 6, p. 2275, Mar. 2022, doi: 10.3390/EN15062275.
F. Aminifar and F. Rahmatian, “Unmanned Aerial Vehicles in Modern Power Systems: Technologies, Use Cases, Outlooks, and Challenges,” IEEE Electrification Magazine, vol. 8, no. 4, pp. 107–116, Dec. 2020, doi: 10.1109/MELE.2020.3026505.
A. B. Alhassan, X. Zhang, H. Shen, and H. Xu, “Power transmission line inspection robots: A review, trends and challenges for future research,” International Journal of Electrical Power & Energy Systems, vol. 118, p. 105862, Jun. 2020, doi: 10.1016/J.IJEPES.2020.105862.
G. K. Balakrishnan et al., “A Review of Infrared Thermography for Condition-Based Monitoring in Electrical Energy: Applications and Recommendations,” Energies 2022, Vol. 15, Page 6000, vol. 15, no. 16, p. 6000, Aug. 2022, doi: 10.3390/EN15166000.
R. Alfredo Osornio-Rios, J. A. Antonino-Daviu, and R. De Jesus Romero-Troncoso, “Recent industrial applications of infrared thermography: A review,” IEEE Trans Industr Inform, vol. 15, no. 2, pp. 615–625, Feb. 2019, doi: 10.1109/TII.2018.2884738.
A. A. Sarawade and N. N. Charniya, “Infrared Thermography and its Applications: A Review,” Proceedings of the 3rd International Conference on Communication and Electronics Systems, ICCES 2018, pp. 280–285, Oct. 2018, doi: 10.1109/CESYS.2018.8723875.
K. Takaya, H. Ohta, V. Kroumov, K. Shibayama, and M. Nakamura, “Development of UAV system for autonomous power line inspection,” 2019 23rd International Conference on System Theory, Control and Computing, ICSTCC 2019 - Proceedings, pp. 762–767, Oct. 2019, doi: 10.1109/ICSTCC.2019.8885596.
O. B. Schofield, N. Iversen, and E. Ebeid, “Autonomous power line detection and tracking system using UAVs,” Microprocess Microsyst, vol. 94, p. 104609, Oct. 2022, doi: 10.1016/J.MICPRO.2022.104609.
Z. Li, Y. Zhang, H. Wu, S. Suzuki, A. Namiki, and W. Wang, “Design and Application of a UAV Autonomous Inspection System for High-Voltage Power Transmission Lines,” Remote Sensing 2023, Vol. 15, Page 865, vol. 15, no. 3, p. 865, Feb. 2023, doi: 10.3390/RS15030865.
S. Jordan et al., “State-of-the-art technologies for UAV inspections,” IET Radar, Sonar & Navigation, vol. 12, no. 2, pp. 151–164, Feb. 2018, doi: 10.1049/IET-RSN.2017.0251.
L. Yang, J. Fan, Y. Liu, E. Li, J. Peng, and Z. Liang, “A Review on State-of-the-Art Power Line Inspection Techniques,” IEEE Trans Instrum Meas, vol. 69, no. 12, pp. 9350–9365, Dec. 2020, doi: 10.1109/TIM.2020.3031194.
M. A. Rahman, R. Masum, M. Anderson, and S. L. Drager, “Trajectory Synthesis for a UAV Swarm to Perform Resilient Requirement-Aware Surveillance: A Smart Grid-based Study,” Nov. 2019, Accessed: Dec. 13, 2023. [Online]. Available: https://arxiv.org/abs/1911.02512v1
M. Sneha et al., “An effective drone surveillance system using thermal imaging,” Proceedings of the International Conference on Smart Technologies in Computing, Electrical and Electronics, ICSTCEE 2020, pp. 477–482, Oct. 2020, doi: 10.1109/ICSTCEE49637.2020.9277292.
Y. LI, X. DU, F. WAN, X. WANG, and H. YU, “Rotating machinery fault diagnosis based on convolutional neural network and infrared thermal imaging,” Chinese Journal of Aeronautics, vol. 33, no. 2, pp. 427–438, Feb. 2020, doi: 10.1016/J.CJA.2019.08.014.
M. Korki, N. D. Shankar, R. N. Shah, S. M. Waseem, and S. Hodges, “Automatic Fault Detection of Power Lines using Unmanned Aerial Vehicle (UAV),” 2019 1st International Conference on Unmanned Vehicle Systems-Oman, UVS 2019, Mar. 2019, doi: 10.1109/UVS.2019.8658283.
H. A. Langåker et al., “An autonomous drone-based system for inspection of electrical substations,” Int J Adv Robot Syst, vol. 18, no. 2, Apr. 2021, doi: 10.1177/17298814211002973/ASSET/IMAGES/LARGE/10.1177_17298814211002973-FIG13.JPEG.
X. Hui, J. Bian, X. Zhao, and M. Tan, “Vision-based autonomous navigation approach for unmanned aerial vehicle transmission-line inspection,” Int J Adv Robot Syst, vol. 15, no. 1, Jan. 2018, doi: 10.1177/1729881417752821/ASSET/IMAGES/LARGE/10.1177_1729881417752821-FIG15.JPEG.
J. Y. Park, S. T. Kim, J. K. Lee, J. W. Ham, and K. Y. Oh, “Automatic Inspection Drone with Deep Learning-based Auto-tracking Camera Gimbal to Detect Defects in Power Lines,” ACM International Conference Proceeding Series, Aug. 2019, doi: 10.1145/3387168.3387176.
C. Sampedro Pérez, “Learning-Based Perception, Control, and Navigation for Autonomous Missions in Aerial Robotics,” 2019, doi: 10.20868/UPM.THESIS.57709.
J. Starzyński, P. Zawadzki, and D. Harańczyk, “Machine Learning in Solar Plants Inspection Automation,” Energies 2022, Vol. 15, Page 5966, vol. 15, no. 16, p. 5966, Aug. 2022, doi: 10.3390/EN15165966.
M. Sherman, M. Gammill, A. Raissi, and M. Hassanalian, “Solar uav for the inspection and monitoring of photovoltaic (Pv) systems in solar power plants,” AIAA Scitech 2021 Forum, pp. 1–10, 2021, doi: 10.2514/6.2021-1683.
I. Segovia Ramírez, A. Pliego Marugán, and F. P. García Márquez, “A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections,” Renew Energy, vol. 187, pp. 371–389, Mar. 2022, doi: 10.1016/J.RENENE.2022.01.071.
X. Li, Q. Yang, Z. Chen, X. Luo, and W. Yan, “Visible defects detection based on UAV-based inspection in large-scale photovoltaic systems,” IET Renewable Power Generation, vol. 11, no. 10, pp. 1234–1244, Aug. 2017, doi: 10.1049/IET-RPG.2017.0001.
A. H. Bagdadee, “A Comparative Analysis of Drone Technologies,” Nov. 2023, doi: 10.21203/RS.3.RS-3537611/V1.
M. Schranz, M. Umlauft, M. Sende, and W. Elmenreich, “Swarm Robotic Behaviors and Current Applications,” Front Robot AI, vol. 7, p. 512421, Apr. 2020, doi: 10.3389/FROBT.2020.00036/BIBTEX.
S. J. Vance, M. E. Richards, and M. C. Walters, “Evaluation of roof leak detection utilizing unmanned aircraft systems equipped with thermographic sensors,” This Digital Resource was created in Microsoft Word and Adobe Acrobat, Jan. 2018, doi: 10.21079/11681/31239.
A. Choudhary, T. Mian, and S. Fatima, “Convolutional neural network based bearing fault diagnosis of rotating machine using thermal images,” Measurement, vol. 176, p. 109196, May 2021, doi: 10.1016/J.MEASUREMENT.2021.109196.
H. Liang, Z. Li, C. Liu, J. Yang, and Y. Zhang, “Computer Vision based Automatic Power Equipment Condition Monitoring and Maintenance: A Brief Review,” Proceedings - 2020 19th Distributed Computing and Applications for Business Engineering and Science, DCABES 2020, pp. 142–145, Oct. 2020, doi: 10.1109/DCABES50732.2020.00045.
Y. Luo, X. Yu, D. Yang, and B. Zhou, “A survey of intelligent transmission line inspection based on unmanned aerial vehicle,” Artificial Intelligence Review 2022 56:1, vol. 56, no. 1, pp. 173–201, Apr. 2022, doi: 10.1007/S10462-022-10189-2.
A. Massaro and A. Galiano, “Infrared Thermography for Intelligent Robotic Systems in Research Industry Inspections: Thermography in Industry Processes,” https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-0137-5.ch005, pp. 98–125, Jan. 1AD, doi: 10.4018/978-1-7998-0137-5.CH005.
W. M. Martins, A. J. Dantas Filho, L. D. De Jesus, A. D. De Souza, A. C. B. Ramos, and T. C. Pimenta, “Tracking for inspection in energy transmission power lines using unmanned aerial vehicles: a systematic review of current and specific literature,” International Journal of Robotics and Automation (IJRA), vol. 9, no. 4, pp. 233–243, 2020, doi: 10.11591/ijra.v9i4.pp233-243.
DOI: https://doi.org/10.23857/pc.v9i1.6367
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/