Elevador DC-AC Inversor de 10 kW con transformador para la mejora del THD controlado mediante PI difuso con antiwindup
Resumen
El documento presenta de manera resumida, consideraciones para el diseño de un sistema de conversión DC-AC de 48 V dc a 120 V RMS, empleando una fuente elevadora con un puente H de inversión, presentando una regulación con base en un PI difuso con anti-windup. Adicionalmente se procede a la valoración bajo diferentes escenarios, sin regulación o en lazo abierto, con regulación o en lazo cerrado, con regulación ante variación de carga y luego ante variación de tensión de fuente. Finalmente se presenta la forma de valoración con base en estudios espectrales para análisis comparativos de manera gráfica y para establecer criterios de determinación del factor de rizo y THD o factor de distorsión armónica empleando estudios en frecuencia.
Palabras clave
Referencias
Al Sumarmad, K. A., Sulaiman, N., Wahab, N. I. A., & Hizam, H. (2022). Energy Management and Voltage Control in Microgrids Using Artificial Neural Networks, PID, and Fuzzy Logic Controllers. Energies, 15(1), 303. https://doi.org/10.3390/en15010303
Ayob, S. M., Salam, Z., & Azli, N. A. (2006). Simple PI Fuzzy Logic Controller Applied in DC-AC Converter. 2006 IEEE International Power and Energy Conference, 393–398. https://doi.org/10.1109/PECON.2006.346683
Basaran, K., & Cetin, N. S. (2016). Designing of a fuzzy controller for grid connected photovoltaic system’s converter and comparing with PI controller. 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), 102–106. https://doi.org/10.1109/ICRERA.2016.7884437
Chapra, S. C., & Canales, R. P. (2007). Métodos numéricos para ingenieros (5a. ed.). mc.
Das, S., Thotakanama, N. K., & Manickavasagam, K. (2017). Analysis and design of fuzzy based PWM controller for solar power generation. 2017 International Conference on Technological Advancements in Power and Energy ( TAP Energy), 1–6. https://doi.org/10.1109/TAPENERGY.2017.8397263
Ferguson, J. (1964). Multivariable Curve Interpolation. Journal of the ACM, 11(2), 221–228. https://doi.org/10.1145/321217.321225
Gadupudi, L., Rao, G. S., Narayana Divakar, R. V. L., Malik, H., Alsaif, F., Alsulamy, S., & Ustun, T. S. (2023). Fuzzy-Based Fifteen-Level VSC for STATCOM Operations with Single DC-Link Voltage. Sustainability, 15(7), 6188. https://doi.org/10.3390/su15076188
Hart, D. W. (2001). Electrónica de potencia. In Pearson Educaci[on, S.A.
Hilloowala, R. M., & Sharaf, A. M. (1996). A rule-based fuzzy logic controller for a PWM inverter in a stand alone wind energy conversion scheme. IEEE Transactions on Industry Applications, 32(1), 57–65. https://doi.org/10.1109/28.485813
Khairy, A., Ibrahim, M., Abdel-Rahim, N., & Elsherif, H. (2011). Comparing proportional-resonant and fuzzy-logic controllers for current controlled single-phase grid-connected PWM DC/AC Inverters. IET Conference on Renewable Power Generation (RPG 2011), 153–153. https://doi.org/10.1049/cp.2011.0160
Li Jian, Kang Yong, & Chen Jian. (n.d.). Fuzzy-tuning PID control of an inverter with rectifier-type nonlinear loads. Proceedings IPEMC 2000. Third International Power Electronics and Motion Control Conference (IEEE Cat. No.00EX435), 1, 381–384. https://doi.org/10.1109/IPEMC.2000.885433
Lin, B.-R., & Hoft, R. G. (n.d.). Power electronics converter control based on neural network and fuzzy logic methods. Proceedings of IEEE Power Electronics Specialist Conference - PESC ’93, 900–906. https://doi.org/10.1109/PESC.1993.472028
Madden, H. H. (1978). Comments on the Savitzky-Golay convolution method for least-squares-fit smoothing and differentiation of digital data. Analytical Chemistry, 50(9), 1383–1386. https://doi.org/10.1021/ac50031a048
Mukhatov, A., Thao, N. G. M., & Do, T. D. (2022). Linear Quadratic Regulator and Fuzzy Control for Grid-Connected Photovoltaic Systems. Energies, 15(4), 1286. https://doi.org/10.3390/en15041286
Mutlag, A., Mohamed, A., & Shareef, H. (2016). A Nature-Inspired Optimization-Based Optimum Fuzzy Logic Photovoltaic Inverter Controller Utilizing an eZdsp F28335 Board. Energies, 9(3), 120. https://doi.org/10.3390/en9030120
Osterholtz, H. (n.d.). Simple fuzzy control of a PWM inverter for a UPS system. Proceedings of INTELEC 95. 17th International Telecommunications Energy Conference, 565–570. https://doi.org/10.1109/INTLEC.1995.499012
Rajendran, S., Thangavel, V., Krishnan, N., & Prabaharan, N. (2023). DC Link Voltage Enhancement in DC Microgrid Using PV Based High Gain Converter with Cascaded Fuzzy Logic Controller. Energies, 16(9), 3928. https://doi.org/10.3390/en16093928
Reddy, P. Y., & Saikia, L. C. (2023). Hybrid AC/DC control techniques with improved harmonic conditions using DBN based fuzzy controller and compensator modules. Systems Science & Control Engineering, 11(1). https://doi.org/10.1080/21642583.2023.2188406
Ruelle, D., & Dewitt-Morette, C. (1990). Elements of Differentiable Dynamics and Bifurcation Theory. Physics Today, 43(2), 120–120. https://doi.org/10.1063/1.2810458
Unde, M., Deokar, K., Hans, M., & Kawthe, S. (2020). Closed-Loop Design of Fuzzy Logic Controller in Solar Power Generation. 2020 Fourth International Conference on Inventive Systems and Control (ICISC), 215–219. https://doi.org/10.1109/ICISC47916.2020.9171191
DOI: https://doi.org/10.23857/pc.v8i10.6320
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/