Tendencia pedagógica en educación superior médica
Resumen
El advenimiento de la tecnología ha permitido dos corrientes bien definidas, por una parte, el fortalecimiento de los pilares del accionar médico en relación al diagnóstico, tratamiento, pronóstico, prevención y por otra; el nacimiento de la educación médica con una nueva tendencia pedagógica basada en adquisición de competencias mediante la técnica de Razonamiento Basado en Caso con el auxilio de la Inteligencia Artificial y Aprendizaje Basado en Problemas; el propósito de esta tendencia pedagógica es permitir al estudiante el contacto con escenarios clínicos reales e hipotéticos que permitan la construcción de soluciones enmarcadas en el método científico, epidemiológico y clínico. El principal objetivo de esta revisión es describir la nueva tendencia pedagógica y su aplicación en la educación superior médica.
Palabras clave
Referencias
Trullàs JC, Blay C, Sarri E, Pujol R. Effectiveness of problem-based learning methodology in undergraduate medical education: a scoping review. BMC Med Educ [Internet]. el 17 de febrero de 2022;22(1):104. Disponible en: http://dx.doi.org/10.1186/s12909-022-03154-8
Li A, Bilgic E, Keuhl A, Sibbald M. Does your group matter? How group function impacts educational outcomes in problem-based learning: a scoping review. BMC Med Educ [Internet]. el 29 de diciembre de 2022;22(1):900. Disponible en: http://dx.doi.org/10.1186/s12909-022-03966-8
Köhler AK, Jaarsma T, Tingström P, Nilsson S. The effect of problem-based learning after coronary heart disease - a randomised study in primary health care (COR-PRIM). BMC Cardiovasc Disord [Internet]. el 14 de agosto de 2020;20(1):370. Disponible en: http://dx.doi.org/10.1186/s12872-020-01647-2
Sarker IH. AI-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems. SN Comput Sci [Internet]. el 10 de febrero de 2022;3(2):158. Disponible en: http://dx.doi.org/10.1007/s42979-022-01043-x
Christianto PA, Sediyono E, Sembiring I. Modification of case-based reasoning similarity formula to enhance the performance of smart system in handling the complaints of in vitro fertilization program patients. Healthc Inform Res [Internet]. julio de 2022;28(3):267–75. Disponible en: http://dx.doi.org/10.4258/hir.2022.28.3.267
Schwartz FL, Shubrook JH, Marling CR. Use of case-based reasoning to en-hance intensive management of patients on insulin pump therapy. J Diabetes Sci Technol [Internet]. julio de 2008;2(4):603–11. Disponible en: http://dx.doi.org/10.1177/193229680800200411
Feuillâtre H, Auffret V, Castro M, Lalys F, Le Breton H, Garreau M, et al. Similarity measures and attribute selection for case-based reasoning in transcatheter aortic valve implantation. PLoS One [Internet]. el 3 de septiembre de 2020;15(9):e0238463. Disponible en: http://dx.doi.org/10.1371/journal.pone.0238463
Oyelade ON, Ezugwu AE. A case-based reasoning framework for early detection and diagnosis of novel coronavirus. Inform Med Unlocked [Internet]. el 23 de julio de 2020;20(100395):100395. Disponible en: http://dx.doi.org/10.1016/j.imu.2020.100395
Sheng Y, Zhang J, Wang C, Yin F-F, Wu QJ, Ge Y. Incorporating case-based reasoning for radiation therapy knowledge modeling: A pelvic case study. Tech-nol Cancer Res Treat [Internet]. el 1 de enero de 2019;18:1533033819874788. Disponible en: http://dx.doi.org/10.1177/1533033819874788
Goyal H, Sherazi SAA, Gupta S, Perisetti A, Achebe I, Ali A, et al. Application of artificial intelligence in diagnosis of pancreatic malignancies by endoscopic ul-trasound: a systemic review. Therap Adv Gastroenterol [Internet]. el 29 de abril de 2022;15:17562848221093872. Disponible en: http://dx.doi.org/10.1177/17562848221093873
Carson T, Ghoshal G, Cornwall GB, Tobias R, Schwartz DG, Foley KT. Artificial Intelligence-enabled, real-time intraoperative ultrasound imaging of neural struc-tures within the psoas: Validation in a porcine spine model. Spine (Phila Pa 1976) [Internet]. el 1 de febrero de 2021;46(3):E146–52. Disponible en: http://dx.doi.org/10.1097/BRS.0000000000003704
Sun J, Peng L, Li T, Adila D, Zaiman Z, Melton GB, et al. A prospective observa-tional study to investigate performance of a chest X-ray artificial intelligence di-agnostic support tool across 12 U.s. hospitals. ArXiv [Internet]. el 3 de junio de 2021; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/34099980
Goyal H, Mann R, Gandhi Z, Perisetti A, Zhang Z, Sharma N, et al. Application of artificial intelligence in pancreaticobiliary diseases. Ther Adv Gastrointest En-dosc [Internet]. enero de 2021;14:2631774521993059. Disponible en: http://dx.doi.org/10.1177/2631774521993059
İn E, Geçkil AA, Kavuran G, Şahin M, Berber NK, Kuluöztürk M. Using artificial intelligence to improve the diagnostic efficiency of pulmonologists in differentiat-ing COVID-19 pneumonia from community-acquired pneumonia. J Med Virol [In-ternet]. agosto de 2022;94(8):3698–705. Disponible en: http://dx.doi.org/10.1002/jmv.27777
Malik MN, Yousaf MA, Riaz R, Ibrahim A, Abu Zar M, Aslam S, et al. Retraction: Team-based learning and the analytical skills of medical students as a conse-quence of increased problem difficulty. Cureus [Internet]. el 6 de agosto de 2019;11(8):r16. Disponible en: http://dx.doi.org/10.7759/cureus.r16
Almulhem MA, Almulhem JA. Evaluation of Problem-Based Learning implemen-tation in a College of Medicine, Kingdom of Saudi Arabia: a cross sectional comparative study. BMC Med Educ [Internet]. el 23 de abril de 2022;22(1):311. Disponible en: http://dx.doi.org/10.1186/s12909-022-03347-1
Kibret S, Teshome D, Fenta E, Hunie M, Taye MG, Fentie Y, et al. Medical and Health Science students’ perception towards a problem-based learning method: A case of Debre tabor university. Adv Med Educ Pract [Internet]. el 16 de julio de 2021;12:781–6. Disponible en: http://dx.doi.org/10.2147/AMEP.S316905
Pu D, Ni J, Song D, Zhang W, Wang Y, Wu L, et al. Influence of critical thinking disposition on the learning efficiency of problem-based learning in undergradu-ate medical students. BMC Med Educ [Internet]. el 3 de enero de 2019;19(1):1. Disponible en: http://dx.doi.org/10.1186/s12909-018-1418-5
Abdalla MMI, Abdelal MS, Soon SC. Attitude towards problem-based learning and its relationship with locus of control and academic self-concept among med-ical students. Korean J Med Educ [Internet]. marzo de 2019;31(1):11–8. Disponi-ble en: http://dx.doi.org/10.3946/kjme.2019.114
Bukumiric Z, Ilic A, Pajcin M, Srebro D, Milicevic S, Spaic D, et al. Effects of problem-based learning modules within blended learning courses in medical statistics - A randomized controlled pilot study. PLoS One [Internet]. el 26 de enero de 2022;17(1):e0263015. Disponible en: http://dx.doi.org/10.1371/journal.pone.0263015
Shimizu I, Nakazawa H, Sato Y, Wolfhagen IHAP, Könings KD. Does blended problem-based learning make Asian medical students active learners?: a pro-spective comparative study. BMC Med Educ [Internet]. el 15 de mayo de 2019;19(1):147. Disponible en: http://dx.doi.org/10.1186/s12909-019-1575-1
Chung EY-H. Facilitating learning of community-based rehabilitation through problem-based learning in higher education. BMC Med Educ [Internet]. el 21 de noviembre de 2019;19(1):433. Disponible en: http://dx.doi.org/10.1186/s12909-019-1868-4
Zhang F, Wang H, Bai Y, Zhang H. A bibliometric analysis of the landscape of Problem-Based Learning research (1981-2021). Front Psychol [Internet]. el 15 de marzo de 2022;13:828390. Disponible en: http://dx.doi.org/10.3389/fpsyg.2022.828390
Matlala S. Educators’ perceptions and views of problem-based learning through simulation. Curationis [Internet]. el 10 de marzo de 2021;44(1):e1–7. Disponible en: http://dx.doi.org/10.4102/curationis.v44i1.2094
Tudor Car L, Kyaw BM, Dunleavy G, Smart NA, Semwal M, Rotgans JI, et al. Digital problem-based learning in health professions: Systematic review and me-ta-analysis by the digital health education collaboration. J Med Internet Res [In-ternet]. el 28 de febrero de 2019;21(2):e12945. Disponible en: http://dx.doi.org/10.2196/12945
Yang J, Ye H, Fan X, Li Y, Wu X, Zhao M, et al. Artificial Intelligence for Quantify-ing Immune Infiltrates Interacting with Stroma in Colorectal Cancer. Journal of Translational Medicine. 2022;20(1).
Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G. Artificial intelligence in anesthesiology: Current techniques, clinical applications, and limitations. Anesthesiology [Internet]. febrero de 2020;132(2):379–94. Disponible en: http://dx.doi.org/10.1097/ALN.0000000000002960
Börner K, Scrivner O, Cross LE, Gallant M, Ma S, Martin AS, et al. Mapping the co-evolution of artificial intelligence, robotics, and the internet of things over 20 years (1998-2017). PLoS One [Internet]. el 2 de diciembre de 2020;15(12):e0242984. Disponible en: http://dx.doi.org/10.1371/journal.pone.0242984
Gichoya JW, Banerjee I, Bhimireddy AR, Burns JL, Celi LA, Chen L-C, et al. AI recognition of patient race in medical imaging: a modelling study. Lancet Digit Health [Internet]. junio de 2022;4(6):e406–14. Disponible en: http://dx.doi.org/10.1016/S2589-7500(22)00063-2
Ji Y, Ji Y, Liu Y, Zhao Y, Zhang L. Research progress on diagnosing retinal vas-cular diseases based on artificial intelligence and fundus images. Front Cell Dev Biol [Internet]. el 28 de marzo de 2023;11:1168327. Disponible en: http://dx.doi.org/10.3389/fcell.2023.1168327
Chen Q, Cai M, Fan X, Liu W, Fang G, Yao S, et al. An artificial intelligence-based ecological index for prognostic evaluation of colorectal cancer. BMC Can-cer [Internet]. el 17 de agosto de 2023;23(1):763. Disponible en: http://dx.doi.org/10.1186/s12885-023-11289-0
Ng DTK, Leung JKL, Su J, Ng RCW, Chu SKW. Teachers’ AI digital competen-cies and twenty-first century skills in the post-pandemic world. Educ Technol Res Dev [Internet]. el 21 de febrero de 2023;71(1):137–61. Disponible en: http://dx.doi.org/10.1007/s11423-023-10203-6
Mallik S, Gangopadhyay A. Proactive and reactive engagement of artificial intel-ligence methods for education: a review. Front Artif Intell [Internet]. el 5 de mayo de 2023;6:1151391. Disponible en: http://dx.doi.org/10.3389/frai.2023.1151391
DOI: https://doi.org/10.23857/pc.v8i9.6044
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/