Optimización de fresado de alta precisión con técnicas metaheurísticas e Inteligencia Artificial: revisión sistemática
Resumen
La optimización de los parámetros de fresado de alta precisión es esencial en la industria manufacturera, y las técnicas metaheurísticas y la inteligencia artificial son herramientas efectivas para abordar este problema. En este artículo, se realiza una revisión sistemática de la literatura para identificar las principales tendencias y avances en la aplicación de estas técnicas en la optimización del fresado de alta precisión. La metodología de la revisión se basó en una búsqueda exhaustiva en bases de datos científicas y se identificaron tendencias y patrones comunes en los estudios revisados. Los resultados muestran que la selección adecuada de los parámetros de corte puede mejorar la eficiencia del fresado y reducir los costos de producción. Se sugiere que la combinación de técnicas de fresado de alta precisión y técnicas de metrología de alta precisión podría mejorar aún más la calidad de las piezas producidas. Además, se ha observado que la optimización de los parámetros de fresado, considerando múltiples objetivos y restricciones, ha sido el enfoque de diversas investigaciones y se han propuesto diferentes técnicas metaheurísticas e inteligencia artificial para abordar este desafío. Se han utilizado técnicas de optimización multiobjetivo y aprendizaje automático, así como análisis de vibración, para evaluar la calidad de las piezas producidas.
Palabras clave
Referencias
Wang, W., Tian, G., Chen, M., Tao, F., Zhang, C., AI-Ahmari, A., Li, Z., & Jiang, Z. (2020). Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints. Journal of Cleaner Production, 245, 118714. https://doi.org/10.1016/j.jclepro.2019.118714
Zhou, J., Gao, L., Yao, X., Chan, F. T. S., Zhang, J., Li, X., & Lin, Y. (2019). A decomposition and statistical learning based many-objective artificial bee colony optimizer. Information Sciences, 496, 82-108. https://doi.org/10.1016/j.ins.2019.05.014
Zhou, J., Yao, X., Lin, Y., Chan, F. T. S., & Li, Y. (2018). An adaptive multi-population differential artificial bee colony algorithm for many-objective service composition in cloud manufacturing. Information Sciences, 456, 50-82. https://doi.org/10.1016/j.ins.2018.05.009
Zhang, H., Deng, Z., Fu, Y., Lv, L., & Yan, C. (2017). A process parameters optimization method of multi-pass dry milling for high efficiency, low energy and low carbon emissions. Journal of Cleaner Production, 148, 174-184. https://doi.org/10.1016/j.jclepro.2017.01.077
Yan, J., & Li, L. (2013). Multi-objective optimization of milling parameters – the trade-offs between energy, production rate and cutting quality. Journal of Cleaner Production, 52, 462-471. https://doi.org/10.1016/j.jclepro.2013.02.030
Ding, P., Huang, X., Zhang, X., Li, Y., & Wang, C. (2022). Reliability optimization of micro-milling cutting parameters using slime mould sequence algorithm. Simulation Modelling Practice and Theory, 119, 102575. https://doi.org/10.1016/j.simpat.2022.102575
Han, F., Li, L., Cai, W., Li, C., Deng, X., & Sutherland, J. W. (2020). Parameters optimization considering the trade-off between cutting power and MRR based on Linear Decreasing Particle Swarm Algorithm in milling. Journal of Cleaner Production, 262, 121388. https://doi.org/10.1016/j.jclepro.2020.121388
Krimpenis, A. A., Fountas, N. A., Mantziouras, T., & Vaxevanidis, N. M. (2016). Optimizing CNC wood milling operations with the use of genetic algorithms on CAM software. Wood Material Science & Engineering, 11(2), 102-115. DOI: 10.1080/17480272.2014.961959
Abdellahi, M., Bahmanpour, M., & Bahmanpour, M. (2014). The use of artificial bee colony algorithm to speed up the nanopowders synthesis during high energy ball milling. Powder Technology, 264, 61-70. https://doi.org/10.1016/j.powtec.2014.05.014
Chen, Y., Sun, Y., Lin, H., & Zhang, B. (2020). Prediction Model of Milling Surface Roughness Based on Genetic Algorithms. In Z. Xu, K. K. Choo, A. Dehghantanha, R. Parizi, & M. Hammoudeh (Eds.), Cyber Security Intelligence and Analytics. CSIA 2019. Advances in Intelligent Systems and Computing (Vol. 928). Springer. https://doi.org/10.1007/978-3-030-15235-2_179
Sun, H., Li, L., Yan, C., Song, L., Huang, Y., & Zhou, C. (2022). Optimization of High-speed Dry Milling Process Parameters Based on Improved ELM and Genetic Algorithm. Highlights in Science, Engineering and Technology, 7, 272-283. https://doi.org/10.54097/hset.v7i.1082
Cheng, D. J., Xu, F., Xu, S. H., & Tan, Y. M. (2020). Minimization of Surface Roughness and Machining Deformation in Milling of Al Alloy Thin-Walled Parts. International Journal of Precision Engineering and Manufacturing, 21(9), 1597-1613. https://doi.org/10.1007/s12541-020-00366-0
Bai, L., Xu, F., Chen, X., Tan, Y. M., & Liu, G. (2022). A hybrid deep learning model for robust prediction of the dimensional accuracy in precision milling of thin-walled structural components. Frontiers of Mechanical Engineering, 17(1), 32. https://doi.org/10.1007/s11465-022-0688-0
Ntemi, M., Paraschos, S., Karakostas, A., Gialampoukidis, I., Vrochidis, S., & Kompatsiaris, I. (2022). Infrastructure monitoring and quality diagnosis in CNC machining: A review. CIRP Journal of Manufacturing Science and Technology, 38, 631-649. https://doi.org/10.1016/j.cirpj.2022.06.001
Lohithaksha M. Maiyar, R. Ramanujam, K. Venkatesan, & J. Jerald. (2013). Optimization of Machining Parameters for end Milling of Inconel 718 Super Alloy Using Taguchi based Grey Relational Analysis. Procedia Engineering, 64, 1276-1282. https://doi.org/10.1016/j.proeng.2013.09.208
Xiaohong Lu, Furui Wang, Xinxin Wang, & Likun Si. (2018). Modelling and optimisation of cutting parameters on surface roughness in micro-milling Inconel 718 using response surface methodology and genetic algorithm. International Journal of Nanomanufacturing, 14(1-2), 34-50. https://doi.org/10.1504/IJNM.2018.089178
Wang, J., Zou, B., Liu, M., et al. (2021). Milling force prediction model based on transfer learning and neural network. Journal of Intelligent Manufacturing, 32(4), 947-956. https://doi.org/10.1007/s10845-020-01595-w
Shahriar Tanvir Alam, A.N.M Amanullah Tomal, & Moddassir Khan Nayeem. (2023). High-Speed Machining of Ti–6Al–4V: RSM-GA based Optimization of Surface Roughness and MRR. Results in Engineering, 17, 100873. https://doi.org/10.1016/j.rineng.2022.100873
Ma, J.-W., Wang, F.-J., Jia, Z.-Y., & Gao, Y.-Y. (2016). Machining Parameter Optimization in High-Speed Milling for Inconel 718 Curved Surface. Materials and Manufacturing Processes, 31(13), 1692-1699. https://doi.org/10.1080/10426914.2015.1117623
Chang, C.-Y., & Wu, T.-Y. (2018). Identification of Milling Status Using Vibration Feature Extraction Techniques and Support Vector Machine Classifier. Inventions, 3(2), 25. https://doi.org/10.3390/inventions3020025
Ambhore, N., Kamble, D., & Chinchanikar, S. (2020). Evaluation of Cutting Tool Vibration and Surface Roughness in Hard Turning of AISI 52100 Steel: An Experimental and ANN Approach. Journal of Vibration Engineering & Technologies, 8(4), 455-462. https://doi.org/10.1007/s42417-019-00136-x
Pimenov, D.Y., Bustillo, A. & Mikolajczyk, T. (2018). Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. J Intell Manuf, 29, 1045–1061. https://doi.org/10.1007/s10845-017-1381-8
Xu, L., Huang, C., Li, C., Zhang, W., & Xie, G. (2021). Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining. J Intell Manuf, 32, 77–90. https://doi.org/10.1007/s10845-020-01559-0
Savković, B. I., Kovač, P., Stoić, A., & Dudić, B. (2020). Optimización de Parámetros de Mecanizado Mediante Taguchi y Análisis ANOVA en el Planeado de Aleaciones de Aluminio AL7075. Diario Técnico, 27(4), 1221-1228. https://doi.org/10.17559/TV-20190621105149
Pare, V., Agnihotri, G., & Krishna, C. (2015). Selection of Optimum Process Parameters in High Speed CNC End-Milling of Composite Materials Using Meta Heuristic Techniques – a Comparative Study. Strojniški vestnik - Journal of Mechanical Engineering, 61(3), 176-186. doi:http://dx.doi.org/10.5545/sv-jme.2014.1914
Wu, T.-Y., & Lin, C.-C. (2021). Optimization of Machining Parameters in Milling Process of Inconel 718 under Surface Roughness Constraints. Appl. Sci., 11, 2137. https://doi.org/10.3390/app11052137
Grzenda, M., & Bustillo, A. (2019). Semi-supervised roughness prediction with partly unlabeled vibration data streams. J Intell Manuf, 30, 933–945. https://doi.org/10.1007/s10845-018-1413-z
Jafrey Daniel James Dhilip, J., Jeevan, J., Arulkirubakaran, D., & Ramesh, M. (2020). Investigation and optimization of parameters for hard turning of OHNS steel. Materials and Manufacturing Processes, 35(10), 1113-1119. DOI: 10.1080/10426914.2020.1765254
DOI: https://doi.org/10.23857/pc.v8i3.5342
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/