Aplicación de los sensores IOT en la agroindustria: estudio taxonómico del modelo GMAAS según el procesamiento de datos
Resumen
La industria 4.0 es un nuevo paradigma que ha tomado terreno dentro de la agroindustria donde se ha observado una creciente aparición de trabajos científicos sobre la utilización de aplicaciones IoT. Un nuevo modelo basado en IoT es el GMaaS el cual requiere del uso de sensores que midan variables físicas ambientales. El objetivo del artículo es encontrar una taxonomía que tenga un buen criterio y permita determinar características generales del tipo de sensores que el modelo GMaaS requiere. Se realizó una revisión bibliográfica sobre las IoT en la agroindustria para determinar modelos taxonómicos y mediante criterios de selección se optó por usar una taxonomía basada en la frecuencia de muestreo y procesado de los datos. Se estudiaron dos casos donde el modelo GMaaS fue utilizado y extrajimos la información relevante sobre los sensores y mediante la descripción se determinó el grupo taxonómico de cada uno. Los resultados que se obtuvieron permitieron concluir que los sensores usados en GMaaS suelen ser del tipo de rango de muestra invariante.
Palabras clave
Referencias
Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE communications surveys & tutorials, 17(4), 2347-2376.
Babar, S., Mahalle, P., Stango, A., Prasad, N., & Prasad, R. (2010). Proposed security model and threat taxonomy for the Internet of Things (IoT). In Recent Trends in Network Security and Applications: Third International Conference, CNSA 2010, Chennai, India, July 23-25, 2010. Proceedings 3 (pp. 420-429). Springer Berlin Heidelberg.
Bai, C., Dallasega, P., Orzes, G., & Sarkis, J. (2020). Industry 4.0 technologies assessment: A sustainability perspective. International journal of production economics, 229, 107776.
Bhat, D.; Kaur, A.; Singh, S. Wireless sensor network specific low power FIR filter design and implementation on FPGA. In Proceedings of the 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 11–13 March 2015; pp. 1534–1536.
Cañas, H., Mula, J., Díaz-Madroñero, M., & Campuzano-Bolarín, F. (2021). Implementing industry 4.0 principles. Computers & industrial engineering, 158, 107379.
Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., & Yin, B. (2017). Smart factory of industry 4.0: Key technologies, application case, and challenges. Ieee Access, 6, 6505-6519.
Devezas, T., & Sarygulov, A. (2017). Industry 4.0. Basel: Springer. (15) Devezas, T., & Sarygulov, A. (2017). Industry 4.0. Basel: Springer.
Duan, Y., Fu, G., Zhou, N., Sun, X., Narendra, N. C., & Hu, B. (2015, June). Everything as a service (XaaS) on the cloud: origins, current and future trends. In 2015 IEEE 8th International Conference on Cloud Computing (pp. 621-628). IEEE.
Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15-26.
Faheem, M., Shah, S. B. H., Butt, R. A., Raza, B., Anwar, M., Ashraf, M. W., ... & Gungor, V. C. (2018). Smart grid communication and information technologies in the perspective of Industry 4.0: Opportunities and challenges. Computer Science Review, 30, 1-30.
Fettermann, D. C., Cavalcante, C. G. S., Almeida, T. D. D., & Tortorella, G. L. (2018). How does Industry 4.0 contribute to operations management?. Journal of industrial and Production Engineering, 35(4), 255-268.
Fowler, K. R. (2009, February). The future of sensors and sensor networks survey results projecting the next 5 years. In 2009 IEEE Sensors Applications Symposium (pp. 1-6). IEEE.
Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of cleaner production, 252, 119869.
Gröger, C. (2018). Building an Industry 4.0 analytics platform: practical challenges, approaches and future research directions. Datenbank-Spektrum, 18(1), 5-14.
Korze, S. Z. (2019). From Industry 4.0 to Tourism 4.0. Innovative issues and approaches in social sciences, 12(3), 29-52.
Javaid, M., Haleem, A., Vaishya, R., Bahl, S., Suman, R., & Vaish, A. (2020). Industry 4.0 technologies and their applications in fighting COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 419-422.
Jones, J., Kening, A., and Vallejos, C. (1999). Reduced state-variable tomato growth model. Transactions of ASAE, 42(1), 255–265.
Laukotka, F., Hanna, M., & Krause, D. (2021). Digital twins of product families in aviation based on an MBSE-assisted approach. Procedia CIRP, 100, 684-689.
López, I. Z., & del Arco, E. C. (2021). Meteorología y climatología. Universidad Nacional de Educación a Distancia–UNED.
Masood, T., & Sonntag, P. (2020). Industry 4.0: Adoption challenges and benefits for SMEs. Computers in Industry, 121, 103261.
MacRuairi, R.; Keane, M.T.; Coleman, G. A Wireless Sensor Network Application Requirements Taxonomy. In Proceedings of the 2008 Second International Conference on Sensor Technologies and Applications
Mathworks (2021) Universidad de Almería develops and Deploys Greenhouse Models as a service to Maximize Crop Production – MATLAB simulink. Available at: https://es.mathworks.com/company/user-stories/universidad-de-almeria-develops-and-deploy-greenhause-models-as-a-service-to-maximize-crop-production.html
Morrison, W.; Guerdan, L.; Kanugo, J.; Trull, T.; Shang, Y. TigerAware: An Innovative Mobile Survey and Sensor Data Collection and Analytics System. In Proceedings of the 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC)
Marcon, P., Zezulka, F., Vesely, I., Szabo, Z., Roubal, Z., Sajdl, O., ... & Dohnal, P. (2017, May). Communication technology for industry 4.0. In 2017 Progress In Electromagnetics Research Symposium-Spring (PIERS) (pp. 1694-1697). IEEE.
Muñoz, M. Berenguel, M., Rodríguez, F., Torres, M., Guzmán, J. L. & Molina, J. A. (2020). A new IoT-based platform for greenhouse crop production. IEEE Internet of Things Journal, 9(9), 6325-6334.
Nawir, M., Amir, A., Yaakob, N., & Lynn, O. B. (2016, August). Internet of Things (IoT): Taxonomy of security attacks. In 2016 3rd international conference on electronic design (ICED) (pp. 321-326). IEEE.
Prause, M. (2019). Challenges of industry 4.0 technology adoption for SMEs: the case of Japan. Sustainability, 11(20), 5807.
Ramírez, A., Berenguel, M., Guzmán, J. L., & Rodríguez, F. (2015). Modeling and control of greenhouse crop growth (p. 250). Basel, Switzerland:: Springer International Publishing.
Rodriguez, M. M. (2022). IoT aplicado al sector agroindustrial, uso de modelos como servicio y arquitectura cloud. V Jornadas de Doctorado en Informática, 131, 118.
Rosero, P. D., López, V. F., & Peluffo, D. H. (2022). A New Data-Preprocessing-Related Taxonomy of Sensors for IoT Applications. Information, 13(5), 241.
Rosin, F., Forget, P., Lamouri, S., & Pellerin, R. (2020). Impacts of Industry 4.0 technologies on Lean principles. International Journal of Production Research, 58(6), 1644-1661.
Rosza, V., Denisczwicz, M., Dutra, M. L., Ghodous, P., da Silva, C. F., Moayeri, N., ... & Figay, N. (2016, October). An Application Domain-Based Taxonomy for IoT Sensors. In ISPE te (pp. 249-258).
Safaei, M., Driss, M., Boulila, W., Sundararajan, E. A., & Safaei, M. (2022). Global outliers detection in wireless sensor networks: A novel approach integrating time‐series analysis, entropy, and random forest‐based classification. Software: Practice and Experience, 52(1), 277-295.
Sánchez, J. & Rodríguez, F., Berenguel, M., & Muñoz, M. (2018, July). Farms, Fogs and Clouds: Data open-architecture for optimal crop growth control for IoF2020 project. In Proceedings of the European Conference on Agricultural Engineering, Wageningen, The Netherlands (pp. 8-12).
Talavera, J. M., Tobón, L. E., Gómez, J. A., Culman, M. A., Aranda, J. M., Parra, D. T., ... & Garreta, L. E. (2017). Review of IoT applications in agro-industrial and environmental fields. Computers and Electronics in Agriculture, 142, 283-297.
Taivalsaari, A., & Mikkonen, T. (2018). A taxonomy of IoT client architectures. IEEE software, 35(3), 83-88.
Tiboni, M., Aggogeri, F., Pellegrini, N., & Perani, C. A. (2019). Smart modular architecture for supervision and monitoring of a 4.0 production plant. International Journal of Automation Technology, 13(2), 310-318.
Torres, M, Guzmán, J. L., Sánchez, J. A., Rodríguez, F., & Muñoz, M. (2019). Greenhouse models as a service (GMaaS) for simulation and control. IFAC-PapersOnLine, 52(30), 190-195.
Ustundag, A., & Cevikcan, E. (2018). Industry 4.0: managing the digital transformation. by Springer Nature.
Xiong, M., & Wang, H. (2022). Digital twin applications in aviation industry: A review. The International Journal of Advanced Manufacturing Technology, 121(9-10), 5677-5692.
Xu, X., Lu, Y., Vogel-Heuser, B., & Wang, L. (2021). Industry 4.0 and Industry 5.0—Inception, conception and perception. Journal of Manufacturing Systems, 61, 530-535.
Yang, B., Zhu, C., & Wang, Z. (2014). Distributed Sampled-Data Filtering over Sensor Networks with Markovian Switching Topologies. Mathematical Problems in Engineering, 2014.
DOI: https://doi.org/10.23857/pc.v8i3.5291
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/