Análisis por desempeño de pórticos de acero arriostrados excéntricamente tipo Y con diferentes longitudes de vínculos

Orlando Guerrero-Verdugo, Juan Barbecho-Chuisaca

Resumen


La existencia de actividad sísmica debido al movimiento continuo de las placas tectónicas ha conllevado la búsqueda para lograr construcciones que sean capaces de soportar las fuerzas laterales creadas por estos eventos. Existen varios sistemas estructurales capaces de disipar la energía que genera un sismo. Dentro de los cuales se encuentran los pórticos de acero arriostrados excéntricamente (PAE). Diferentes estudios de estos sistemas han demostrado que presentan una mayor rigidez y ductilidad que sistemas convencionales. Estos sistemas concentran el daño en el elemento de unión entre el pórtico y el arriostramiento (vínculo), que puede ubicarse en diferentes configuraciones. Por otro lado, se ha encontrado una diferencia de comportamiento del sistema en función de la longitud del vínculo, clasificándolo en vínculos: cortos, intermedios y largos. En este estudio se realiza la comparación de PAE con los tres tipos de vínculos en configuración tipo Y. Para la evaluación del comportamiento se plantea un análisis estático no lineal (pushover) a través de modelos de elementos finitos elaborados en el software ABAQUS. A partir de lo cual se realiza una comparación de la curva de capacidad y capacidad de rotación del PAE con cada vínculo. Obteniendo como resultado que los vínculos cortos otorgan una mayor rigidez y ductilidad que los vínculos intermedios y largos.


Palabras clave


Pórticos arriostrados excéntricamente; tipo Y; arriostramiento; Pushover; Abaqus; curva de capacidad.

Texto completo:

PDF HTML XML

Referencias


ABAQUS. (2014). ABAQUS User Manual (6.14). SIMULIA World Headquarters. Rissing Sun Mills 166 Valley Street, Providence (RI 02909-2499, USA).

Alavi, B., & Krawinkler, H. (2004). Behavior of moment-resisting frame structures subjected to near-fault ground motions. Earthquake Engineering & Structural Dynamics, 33(6), 687–706. https://doi.org/10.1002/eqe.369

Annan, C. D., Youssef, M. A., & El Naggar, M. H. (2009). Experimental evaluation of the seismic performance of modular steel-braced frames. Engineering Structures, 31(7), 1435–1446. https://doi.org/10.1016/j.engstruct.2009.02.024

ANSI/AISC 360-16. (2016). Specification for Structural Steel Buildings.

ASCE/SEI Standard 41-17. (2017). Seismic Evaluation and Retrofit of Existing Buildings American Society of Civil Engineers. Reston, Virginia, USA.

Bak, P., & Tang, C. (1989). Earthquakes as a Self-Organized Critical Phenomenon. Journal of Geophysical Research: Solid Earth, 94(B11), 15635–15637. https://doi.org/10.1029/JB094iB11p15635

Boore, D. M., & Atkinson, G. M. (2008). Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5% Damped PSA at Spectral Periods between 0.01 s and 10.0 s. Earthquake Spectra, 24(1), 99–138. https://doi.org/10.1193/1.2830434

Covacevic, V. S. (1985). El Origen de los Sismos La Teoría de las Placas Tectónicas. Auca: Arquitectura Urbanismo Construcción Arte, 49, 42–43.

Engelhardt, M. D., & Popov, E. P. (1992). Experimental Performance of Long Links in Eccentrically Braced Frames. Journal of Structural Engineering, 118(11), 3067–3088. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3067)

FEMA 356. (2000). Prestandard and commentary for the seismic rehabilitation of buildings (p. 518). Washington, DC, USA.

Hatzigeorgiou, G. (2012). Moment resisting steel frames under repeated earthquakes. Earthquakes and Structures, 3(3), 231–248. https://doi.org/10.12989/eas.2012.3.3_4.231

Hjelmstad, K. D., Popov, E. P., & ASCE, F. (1984). Characteristics of Eccentrically Braced Frames. Journal of Structural Engineering, 110(2), 340–353. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:2(340)

Hoskins, M. C., Meltzer, A., Font, Y., Agurto-Detzel, H., Vaca, S., Rolandone, F., Nocquet, J.-M., Soto-Cordero, L., Stachnik, J. C., Beck, S., Lynner, C., Ruiz, M., Alvarado, A., Hernandez, S., Charvis, P., Regnier, M., Leon-Rios, S., & Rietbrock, A. (2021). Triggered crustal earthquake swarm across subduction segment boundary after the 2016 Pedernales, Ecuador megathrust earthquake. Earth and Planetary Science Letters, 553, 116620. https://doi.org/10.1016/j.epsl.2020.116620

Hu, Y.-X., Liu, S.-C., & Dong, W. (1996). Earthquake Engineering (First edit). E & FN Spon, London, Great Britain, ISBN: 0 419 20590 X.

Kazemzadeh Azad, S., & Topkaya, C. (2017). A review of research on steel eccentrically braced frames. Journal of Constructional Steel Research, 128, 53–73. https://doi.org/10.1016/j.jcsr.2016.07.032

Keivan, A., & Zhang, Y. (2019). Nonlinear seismic performance of Y-type self-centering steel eccentrically braced frame buildings. Engineering Structures, 179, 448–459. https://doi.org/10.1016/j.engstruct.2018.11.002

Lukačević, I., Maleta, T., & Dujmovic, D. (2019, September 5). Behaviour of dual eccentrically braced steel frames with short and long seismic links. 20th Congress of IABSE, New York City 2019: The Evolving Metropolis - Report, New York City, USA.

Mangal, M., & Cheng, J. C. P. (2018). Automated optimization of steel reinforcement in RC building frames using building information modeling and hybrid genetic algorithm. Automation in Construction, 90, 39–57. https://doi.org/10.1016/j.autcon.2018.01.013

Mansour, N., Christopoulos, C., & Tremblay, R. (2011). Experimental Validation of Replaceable Shear Links for Eccentrically Braced Steel Frames. Journal of Structural Engineering, 137(10), 1141–1152. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000350

MIDUVI, & CAMICON. (2015). Norma Ecuatoriana de la Construcción - Peligro Sísmico: Diseño Sismo Resistente (p. 149). Quito, Ecuador, MIDUVI, Registro Oficial, Año II, Nro. 413.

Mohsenian, V., Filizadeh, R., Hajirasouliha, I., & Garcia, R. (2021). Seismic performance assessment of eccentrically braced steel frames with energy-absorbing links under sequential earthquakes. Journal of Building Engineering, 33, 101576. https://doi.org/10.1016/j.jobe.2020.101576

Mohsenian, V., Filizadeh, R., Ozdemir, Z., & Hajirasouliha, I. (2020). Seismic performance evaluation of deficient steel moment-resisting frames retrofitted by vertical link elements. Structures, 26, 724–736. https://doi.org/10.1016/j.istruc.2020.04.043

Okazaki, T., & Engelhardt, M. D. (2007). Cyclic loading behavior of EBF links constructed of ASTM A992 steel. Journal of Constructional Steel Research, 63(6), 751–765. https://doi.org/10.1016/j.jcsr.2006.08.004

Saffari, H., Damroodi, M., & Fakhreddini, A. (2017). Assesment of seismic performance of eccentrically braced frame with vertical members. Asian Journal of Civil Engineering, 18(2), 255–269. https://doi.org/10.1016/j.ajce.2017.02.005

Suswanto, B., Amalia, A., Wahyuni, E., & Rafael, J. (2017). Numerical behavior study of short link, intermediate link and long link in eccentrically braced frame steel structure. International Journal of Applied Engineering Research, 12(21), 11460–11471. https://doi.org/10.1016/j.ijaer.20170.21.035

Tian, X., Su, M., Lian, M., Wang, F., & Li, S. (2018). Seismic behavior of K-shaped eccentrically braced frames with high-strength steel: Shaking table testing and FEM analysis. Journal of Constructional Steel Research, 143, 250–263. https://doi.org/10.1016/j.jcsr.2017.12.030

Tong, L., Zhang, Y., A.M.ASCE, Zhou, X., Keivan, A., & Li, R. (2019). Experimental and Analytical Investigation of D-Type Self-Centering Steel Eccentrically Braced Frames with Replaceable Hysteretic Damping Devices. Journal of Structural Engineering, 145(1), 4018229 1-13. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002235

Wang, F., Su, M., Hong, M., Guo, Y., & Li, S. (2016). Cyclic behaviour of Y-shaped eccentrically braced frames fabricated with high-strength steel composite. Journal of Constructional Steel Research, 120, 176–187. https://doi.org/10.1016/j.jcsr.2016.01.007

Yin, Z., Feng, D., & Yang, W. (2019). Damage Analyses of Replaceable Links in Eccentrically Braced Frame (EBF) Subject to Cyclic Loading. Applied Sciences, 9(2), 332–351. https://doi.org/10.3390/app9020332




DOI: https://doi.org/10.23857/pc.v7i5.4027

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/