La gestión de la inyección electrónica de combustible para los motores de encendido por compresión modernos (CRDI)
Resumen
El sistema de control es un sistema no lineal, donde se desarrolla varios modos de operación como arranque, funcionamiento en frio, funcionamiento normal, funcionamiento con fallos, etc., que son aspectos primordiales en la operación del motor. El objetivo de este artículo fue mostrar las características principales en el desempeño de la inyección electrónica directa riel común, sus variaciones en los procesos de admisión de aire comprimido, inyección de combustible y de los gases contaminantes en los contextos de aplicación de software de simulación y lógica de trabajo como de resultados de varios autores. En conclusión, el control de la inyección electrónica del motor, debe ser capaz de mejorar el rendimiento del motor, la combustión y controlar las emisiones de los motores de encendido por compresión, la tecnología de inyección directa riel común ofrece posibilidades ilimitadas al controlar los parámetros de inyección de combustible, para la flexibilización de los motores modernos.
Palabras clave
Referencias
Agarwal, A. K., Dhar, A., Gupta, J. G., Kim, W. Il, Choi, K., Lee, C. S., & Park, S. (2015). Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristics. Energy Conversion and Management, 91, 302–314. https://doi.org/10.1016/j.enconman.2014.12.004
Agarwal, A. K., Dhar, A., Gupta, J. G., Kim, W. Il, Lee, C. S., & Park, S. (2014). Effect of fuel injection pressure and injection timing on spray characteristics and particulate size-number distribution in a biodiesel fuelled common rail direct injection diesel engine. Applied Energy, 130, 212–221. https://doi.org/10.1016/j.apenergy.2014.05.041
Agarwal, A. K., Dhar, A., Srivastava, D. K., Maurya, R. K., & Singh, A. P. (2013). Effect of fuel injection pressure on diesel particulate size and number distribution in a CRDI single cylinder research engine. Fuel, 107, 84–89. https://doi.org/10.1016/j.fuel.2013.01.077
Agarwal, A. K., Gupta, P., & Dhar, A. (2015). Combustion, performance and emissions characteristics of a newly developed CRDI single cylinder diesel engine. Sadhana - Academy Proceedings in Engineering Sciences, 40(6), 1937–1954. https://doi.org/10.1007/s12046-015-0428-9
Agarwal, A. K., Singh, A. P., Maurya, R. K., Chandra Shukla, P., Dhar, A., & Srivastava, D. K. (2018). Combustion characteristics of a common rail direct injection engine using different fuel injection strategies. International Journal of Thermal Sciences, 134, 475–484. https://doi.org/10.1016/j.ijthermalsci.2018.07.001
Akehurst, S., & Piddock, M. (2008). A novel approach to investigating advanced boosting strategies of future diesel engines. Institution of Mechanical Engineers: Combustion Engines and Fuels Group - Internal Combustion Engines: Performance, Fuel Economy and Emissions, 261–276.
Baert, R. S. G., Beckman, D. E., & Veen, A. (1999). Efficient EGR technology for future HD diesel engine emission targets. SAE Technical Papers. https://doi.org/10.4271/1999-01-0837
Cheong, J., Cho, S., & Kim, C. (2000). Effect of Variable Geometry Turbocharger on HSDI Diesel Engine. Seoul 2000 FISITA World Automotive Congress, 1–5.
Duda, K., Wierzbicki, S., Śmieja, M., & Mikulski, M. (2018). Comparison of performance and emissions of a CRDI diesel engine fuelled with biodiesel of different origin. Fuel, 212, 202–222. https://doi.org/10.1016/j.fuel.2017.09.112
Feneley, A. J., Pesiridis, A., & Andwari, A. M. (2017). Variable Geometry Turbocharger Technologies for Exhaust Energy Recovery and Boosting‐A Review. In Renewable and Sustainable Energy Reviews (Vol. 71, pp. 959–975). https://doi.org/10.1016/j.rser.2016.12.125
Hashimoto, M., Aoyagi, Y., Kobayashi, M., Murayama, T., Goto, Y., & Suzuki, H. (2012). BSFC improvement and NOx reduction by sequential turbo system in a heavy duty diesel engine. SAE Technical Papers. https://doi.org/10.4271/2012-01-0712
İlçin, K., & Altun, Ş. (2021). Effect of biodiesel addition in a blend of isopropanol-butanol-ethanol and diesel on combustion and emissions of a CRDI engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2021.1928797
Joshua, A., Prabhakaran, B., & Vignesh, A. (2020). CFD analysis of turbocharger with wastegate. AIP Conference Proceedings, 2283. https://doi.org/10.1063/5.0025994
Kai Kuhlbach, D.-I., Franz Brinkmann, D.-I., Jürgen Werner, D.-I., Timm Kiener, D.-I., & Michael Becker, D.-I. (2013). Innovative Two-Stage Turbocharging System with Cooled Regulating Valve for Gasoline Engines. 22nd Aachen Colloquium Automobile and Engine Technology.
Karolys, B., Llanes-Cedeño, E., Vega, W., Cevallos, S., & Rocha-Hoyos, J. (2019). Effect of Injection Parameters and Emissioncharacteristics in a Common-Rail Direct Injection Diesel Engine in Height Conditions: A Review. Journal of Engineering Science &Technology Review, 12(3).
Kohketsu, S., Mori, K., Sakai, K., & Hakozaki, T. (1997). EGR technologies for a turbocharged and intercooled heavy-duty diesel engine. SAE Technical Papers. https://doi.org/10.4271/970340
Liu, X., Yu, L., Liu, F., Wu, W., & Wang, R. (2010). Design for control system of wastegate valve actuator in turbocharger. Proceedings - 2010 International Conference on Digital Manufacturing and Automation, ICDMA 2010, 1, 514–517. https://doi.org/10.1109/ICDMA.2010.110
Marri, V. B., Kotha, M. M., & Gaddale, A. P. R. (2021). Experimental investigations on the influence of higher injection pressures and retarded injection timings on a single cylinder CRDi diesel engine. International Journal of Ambient Energy, 42(4), 444–457. https://doi.org/10.1080/01430750.2018.1540017
Mikulski, M., Duda, K., & Wierzbicki, S. (2016). Performance and emissions of a CRDI diesel engine fuelled with swine lard methyl esters-diesel mixture. Fuel, 164, 206–219. https://doi.org/10.1016/j.fuel.2015.09.083
Ortenzi, F., Genovese, A., Carrazza, M., Rispoli, F., & Venturini, P. (2018). Exhaust Energy Recovery with Variable Geometry Turbine to Reduce Fuel Consumption for Microcars. SAE Technical Papers, 2018-Septe. https://doi.org/10.4271/2018-01-1825
Payri González, F., & Desantes Fernández, J. M. (2011). Motores de combustión interna alternativos. Editorial Universitat politécnica de valencia.
Pfeifer, A., Smeets, M., Herrmann, H. O., Tomazic, D., Richert, F., & Schloer, A. (2002). A new approach to boost pressure and EGR rate control development for HD truck engines with VGT. SAE Technical Papers. https://doi.org/10.4271/2002-01-0964
Rahul Chowta, P., Murthy, K., & Mahesha, G. T. (2021). Emission control studies in homogeneous charge compression ignition, premixed charge compression ignition and common rail direct injection engines–a review. Biofuels, 12(4), 363–368. https://doi.org/10.1080/17597269.2019.1657660
Ryder, O., & Sharp, N. (2010). The impact of future engine and vehicle drivetrains on turbocharging system architecture. 9th International Conference on Turbochargers and Turbocharging - Institution of Mechanical Engineers, Combustion Engines and Fuels Group, 1–10. https://doi.org/10.1243/17547164C0012010001
Santhosh, K., Kumar, G. N., Radheshyam, & Sanjay, P. V. (2020). Experimental analysis of performance and emission characteristics of CRDI diesel engine fueled with 1-pentanol/diesel blends with EGR technique. Fuel, 267. https://doi.org/10.1016/j.fuel.2020.117187
Tang, H., Pennycott, A., Akehurst, S., & Brace, C. J. (2015). A review of the application of variable geometry turbines to the downsized gasoline engine. In International Journal of Engine Research (Vol. 16, Issue 6, pp. 810–825). https://doi.org/10.1177/1468087414552289
Tange, H., Ikeya, N., Takanashi, M., & Hokari, T. (2003). Variable geometry diffuser of turbocharger compressor for passenger vehicles. SAE Technical Papers. https://doi.org/10.4271/2003-01-0051
Yin, Y., Liu, Z., Zhuge, W., Zhao, R., Zhao, Y., Chen, Z., & Mi, J. (2016). Experimental study on the performance of a turbocompound diesel engine with variable geometry turbocharger. International Journal of Fluid Machinery and Systems, 9(4), 332–337. https://doi.org/10.5293/IJFMS.2016.9.4.332
Zhu, D., Sun, Z., & Zheng, X. (2020). Turbocharging strategy among variable geometry turbine, two-stage turbine, and asymmetric two-scroll turbine for energy and emission in diesel engines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 234(7), 900–914. https://doi.org/10.1177/0957650919891355
DOI: https://doi.org/10.23857/pc.v6i8.3000
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/