La gestión de la inyección electrónica de combustible para los motores de encendido por compresión modernos (CRDI)

José Israel Guerra-Naranjo, Jairo Edison Guasumba-Maila, Alexis Oswaldo Morillo-Solorzano, Jefferson Javier Guamán-Salcedo

Resumen


El sistema de control es un sistema no lineal, donde se desarrolla varios modos de operación como arranque, funcionamiento en frio, funcionamiento normal, funcionamiento con fallos, etc., que son aspectos primordiales en la operación del motor. El objetivo de este artículo fue mostrar las características principales en el desempeño de la inyección electrónica directa riel común, sus variaciones en los procesos de admisión de aire comprimido, inyección de combustible y de los gases contaminantes en los contextos de aplicación de software de simulación y lógica de trabajo como de resultados de varios autores. En conclusión, el control de la inyección electrónica del motor, debe ser capaz de mejorar el rendimiento del motor, la combustión y controlar las emisiones de los motores de encendido por compresión, la tecnología de inyección directa riel común ofrece posibilidades ilimitadas al controlar los parámetros de inyección de combustible, para la flexibilización de los motores modernos.


Palabras clave


Vehículo; automotriz; sistema CRDI; características de combustión; emisiones; control electrónico.

Texto completo:

PDF HTML XML

Referencias


Agarwal, A. K., Dhar, A., Gupta, J. G., Kim, W. Il, Choi, K., Lee, C. S., & Park, S. (2015). Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristics. Energy Conversion and Management, 91, 302–314. https://doi.org/10.1016/j.enconman.2014.12.004

Agarwal, A. K., Dhar, A., Gupta, J. G., Kim, W. Il, Lee, C. S., & Park, S. (2014). Effect of fuel injection pressure and injection timing on spray characteristics and particulate size-number distribution in a biodiesel fuelled common rail direct injection diesel engine. Applied Energy, 130, 212–221. https://doi.org/10.1016/j.apenergy.2014.05.041

Agarwal, A. K., Dhar, A., Srivastava, D. K., Maurya, R. K., & Singh, A. P. (2013). Effect of fuel injection pressure on diesel particulate size and number distribution in a CRDI single cylinder research engine. Fuel, 107, 84–89. https://doi.org/10.1016/j.fuel.2013.01.077

Agarwal, A. K., Gupta, P., & Dhar, A. (2015). Combustion, performance and emissions characteristics of a newly developed CRDI single cylinder diesel engine. Sadhana - Academy Proceedings in Engineering Sciences, 40(6), 1937–1954. https://doi.org/10.1007/s12046-015-0428-9

Agarwal, A. K., Singh, A. P., Maurya, R. K., Chandra Shukla, P., Dhar, A., & Srivastava, D. K. (2018). Combustion characteristics of a common rail direct injection engine using different fuel injection strategies. International Journal of Thermal Sciences, 134, 475–484. https://doi.org/10.1016/j.ijthermalsci.2018.07.001

Akehurst, S., & Piddock, M. (2008). A novel approach to investigating advanced boosting strategies of future diesel engines. Institution of Mechanical Engineers: Combustion Engines and Fuels Group - Internal Combustion Engines: Performance, Fuel Economy and Emissions, 261–276.

Baert, R. S. G., Beckman, D. E., & Veen, A. (1999). Efficient EGR technology for future HD diesel engine emission targets. SAE Technical Papers. https://doi.org/10.4271/1999-01-0837

Cheong, J., Cho, S., & Kim, C. (2000). Effect of Variable Geometry Turbocharger on HSDI Diesel Engine. Seoul 2000 FISITA World Automotive Congress, 1–5.

Duda, K., Wierzbicki, S., Śmieja, M., & Mikulski, M. (2018). Comparison of performance and emissions of a CRDI diesel engine fuelled with biodiesel of different origin. Fuel, 212, 202–222. https://doi.org/10.1016/j.fuel.2017.09.112

Feneley, A. J., Pesiridis, A., & Andwari, A. M. (2017). Variable Geometry Turbocharger Technologies for Exhaust Energy Recovery and Boosting‐A Review. In Renewable and Sustainable Energy Reviews (Vol. 71, pp. 959–975). https://doi.org/10.1016/j.rser.2016.12.125

Hashimoto, M., Aoyagi, Y., Kobayashi, M., Murayama, T., Goto, Y., & Suzuki, H. (2012). BSFC improvement and NOx reduction by sequential turbo system in a heavy duty diesel engine. SAE Technical Papers. https://doi.org/10.4271/2012-01-0712

İlçin, K., & Altun, Ş. (2021). Effect of biodiesel addition in a blend of isopropanol-butanol-ethanol and diesel on combustion and emissions of a CRDI engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2021.1928797

Joshua, A., Prabhakaran, B., & Vignesh, A. (2020). CFD analysis of turbocharger with wastegate. AIP Conference Proceedings, 2283. https://doi.org/10.1063/5.0025994

Kai Kuhlbach, D.-I., Franz Brinkmann, D.-I., Jürgen Werner, D.-I., Timm Kiener, D.-I., & Michael Becker, D.-I. (2013). Innovative Two-Stage Turbocharging System with Cooled Regulating Valve for Gasoline Engines. 22nd Aachen Colloquium Automobile and Engine Technology.

Karolys, B., Llanes-Cedeño, E., Vega, W., Cevallos, S., & Rocha-Hoyos, J. (2019). Effect of Injection Parameters and Emissioncharacteristics in a Common-Rail Direct Injection Diesel Engine in Height Conditions: A Review. Journal of Engineering Science &Technology Review, 12(3).

Kohketsu, S., Mori, K., Sakai, K., & Hakozaki, T. (1997). EGR technologies for a turbocharged and intercooled heavy-duty diesel engine. SAE Technical Papers. https://doi.org/10.4271/970340

Liu, X., Yu, L., Liu, F., Wu, W., & Wang, R. (2010). Design for control system of wastegate valve actuator in turbocharger. Proceedings - 2010 International Conference on Digital Manufacturing and Automation, ICDMA 2010, 1, 514–517. https://doi.org/10.1109/ICDMA.2010.110

Marri, V. B., Kotha, M. M., & Gaddale, A. P. R. (2021). Experimental investigations on the influence of higher injection pressures and retarded injection timings on a single cylinder CRDi diesel engine. International Journal of Ambient Energy, 42(4), 444–457. https://doi.org/10.1080/01430750.2018.1540017

Mikulski, M., Duda, K., & Wierzbicki, S. (2016). Performance and emissions of a CRDI diesel engine fuelled with swine lard methyl esters-diesel mixture. Fuel, 164, 206–219. https://doi.org/10.1016/j.fuel.2015.09.083

Ortenzi, F., Genovese, A., Carrazza, M., Rispoli, F., & Venturini, P. (2018). Exhaust Energy Recovery with Variable Geometry Turbine to Reduce Fuel Consumption for Microcars. SAE Technical Papers, 2018-Septe. https://doi.org/10.4271/2018-01-1825

Payri González, F., & Desantes Fernández, J. M. (2011). Motores de combustión interna alternativos. Editorial Universitat politécnica de valencia.

Pfeifer, A., Smeets, M., Herrmann, H. O., Tomazic, D., Richert, F., & Schloer, A. (2002). A new approach to boost pressure and EGR rate control development for HD truck engines with VGT. SAE Technical Papers. https://doi.org/10.4271/2002-01-0964

Rahul Chowta, P., Murthy, K., & Mahesha, G. T. (2021). Emission control studies in homogeneous charge compression ignition, premixed charge compression ignition and common rail direct injection engines–a review. Biofuels, 12(4), 363–368. https://doi.org/10.1080/17597269.2019.1657660

Ryder, O., & Sharp, N. (2010). The impact of future engine and vehicle drivetrains on turbocharging system architecture. 9th International Conference on Turbochargers and Turbocharging - Institution of Mechanical Engineers, Combustion Engines and Fuels Group, 1–10. https://doi.org/10.1243/17547164C0012010001

Santhosh, K., Kumar, G. N., Radheshyam, & Sanjay, P. V. (2020). Experimental analysis of performance and emission characteristics of CRDI diesel engine fueled with 1-pentanol/diesel blends with EGR technique. Fuel, 267. https://doi.org/10.1016/j.fuel.2020.117187

Tang, H., Pennycott, A., Akehurst, S., & Brace, C. J. (2015). A review of the application of variable geometry turbines to the downsized gasoline engine. In International Journal of Engine Research (Vol. 16, Issue 6, pp. 810–825). https://doi.org/10.1177/1468087414552289

Tange, H., Ikeya, N., Takanashi, M., & Hokari, T. (2003). Variable geometry diffuser of turbocharger compressor for passenger vehicles. SAE Technical Papers. https://doi.org/10.4271/2003-01-0051

Yin, Y., Liu, Z., Zhuge, W., Zhao, R., Zhao, Y., Chen, Z., & Mi, J. (2016). Experimental study on the performance of a turbocompound diesel engine with variable geometry turbocharger. International Journal of Fluid Machinery and Systems, 9(4), 332–337. https://doi.org/10.5293/IJFMS.2016.9.4.332

Zhu, D., Sun, Z., & Zheng, X. (2020). Turbocharging strategy among variable geometry turbine, two-stage turbine, and asymmetric two-scroll turbine for energy and emission in diesel engines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 234(7), 900–914. https://doi.org/10.1177/0957650919891355




DOI: https://doi.org/10.23857/pc.v6i8.3000

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/