Técnicas aplicadas a la remoción de fármacos, usados en el tratamiento del covid-19: Una revisión
Resumen
El objetivo principal de este trabajo es identificar las técnicas aplicadas en la remoción de fármacos usados para el tratamiento del COVID-19, presentes en matrices acuosas. Los fármacos de mayor uso en el tratamiento de esta enfermedad son la Cloroquina, Azitromicina e Interferón. La Oxidación Electro-Fenton, permitió la eliminación total del fármaco Cloroquina. La Azitromicina presentó un mayor porcentaje de remoción del 87,36% con el sistema biológico con un proceso Sonoquímico. Finalmente, el Interferón tuvo un porcentaje de eliminación del 96,6% utilizando el proceso de Coagulación. Por último, se estableció una comparación, analizando ventajas y desventajas de cada técnica, para la selección de las más convenientes.
Palabras clave
Referencias
Gautam A.K., Kumar S. and Sabumon P.C. (2007) Preliminary study of physico-chemical treatment options for hospital wastewater. J. Environ.Manage., 83: págs. 298-306.
A. Kumari, NS Maurya, B. Tiwari, (2020) Escenario de tratamiento de aguas residuales hospitalarias en todo el mundo, en: Curr. Dev. Biotechnol. Bioeng. Elsevier: págs. 549–570.
Santos JL., Aparicio I., Callejón M., Alonso E. (2009) Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain). J. Hazard. Mater., 164: págs. 1509-1516.
Baquero F., Martínez J. and Cantón R. (2008) Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol., 19: págs. 260-265.
Gautam A.K., Kumar S. and Sabumon P.C. (2007) Preliminary study of physico-chemical treatment options for hospital wastewater. J. Environ. Manage., 83: págs. 298-306.
Suarez S., Lema J.M. and Omil F. (2009) Pre-treatment of hospital wastewater by coagulation-flocculation and flotation. Bioresour. Technol., 100: págs. 2138- 2146.
Ludvik J, Zuman P. (2000) Adsorption of 1, 2, 4-triazine pesticides metamitron and metribuzin on lignin. Microchem J. 64: págs. 15–20.
Kitajima M, Ahmed W, Bibby K, Carducci A, Gerba CP, Hamilton KA, et al. (2020) SARS-CoV-2 in wastewater: State of the knowledge and research needs. Sci Tot Environ; 1390: págs.7-6.
Mao K, Zhang K, Du W, Ali W, Feng X, Zhang H. (2020) The potential of wastewater-based epidemiology as surveillance and early warning of infectious disease outbreaks. Current Opinion in Environmental Science & Health; 17: págs. 1-7.
Karel Kosteva, S. L. (2020). Panic buying or good adherence? Increased pharmacy purchases of drugs from wholesalers in the last week prior to Covid-19 lockdown . Elsevier , 1: págs. 1-3.
de Carvajal, A. C. C., Parra, A. R., Silano, M. F., Briceño, M. M. B., Rosales, M. R., Sánchez, C. C., ... & López, J. F. O. (2020). Nuevo coronavirus (SARS-COV-2): una amenaza global. Medicina Interna, 36(1): págs. 3-15
Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W., Xiao (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Págs. 269–271.
Gautret P., Lagier J.-C., Parola P., Huang V.T., Meddeb L., Mailhe M., Doudier B., Courjon J., Giordanengo V., Vieira V.E., Dupont H.T., Honoré S., Colson P., Chabriere E., La Scola B., Rolain J.-M., Broqui P., Raoult D. (2020) Hydroxychloroquineand azithromycin as a treatment of COVID-19: resultsof an open-label non-randomized trial. Int. J. Antimicrob. Agents; 56: págs 105949–105953.
PB Madrid, RG Panchal, TK Warren, AC Shurtleff, AN Endsley, CE Green, A. Kolokoltsov, R. Davey, ID Manger, L. Gilfillan, S. Bavari, MJ Tanga (2016) Evaluación de inhibidores del virus del Ébola para la reutilización de fármacos, ACS Infect. Dis. 1: págs. 317 – 326.
JiahongTan, Y. Y. (2021). A retrospective comparison of drugs against COVID-19. Elsevier, 1: págs. 1-7.
L. Tanenbaum, DL Tuffanelli.(1980) Agentes antipalúdicos: cloroquina, hidroxicloroquina y quinacrina, Arch. Dermatol. 116, págs.587 – 591.
Yushi Murai, H. K. (2021). A case of COVID-19 diagnosed with favipiravir-induced drug fever based on a positive drug-induced lymphocyte stimulation test. Elsevier, 1: págs. 1-4.
A. Markham, Baricitinib (2017) Primera aprobación mundial, Medicamentos 77: págs. 697 – 704.
Ojeda, L. A.-P.-C.-G.-R. (2020). Propuestas de tratamiento de la infección por SARS-CoV-2: análisis de la evidencia. Medicina Interna de México, págs. 670-687.
Pimentel, J. &. (2020). Cloroquina y sus derivados en el manejo de la COVID-19: una revisión sistemática exploratoria. Biomédica, 40(Suppl 2), págs. 80-81
Vincent, M.J., Bergeron, E., Benjannet, S., Erickson, B.R., Rollin, P.E., Ksiazek, T.G., Seidah, N.G., Nichol, S.T., (2005). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J. 2, págs.69-70.
Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., (2020a). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. págs. 1061–1069.
Liu, J., Cao, R., Xu, M., Wang, X., Zhang, H., Hu, H., Li, Y., Hu, Z., Zhong, W., Wang, M., (2020a). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 6, págs. 1–6.
Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Niu, P., Liu, X., Zhao, L., Dong, E., Song, C., (2020b). In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 71, págs. 732–739.
Gautret, P., Lagier, J.-C., Parola, P., Meddeb, L., Mailhe, M., Doudier, B., Courjon, J., Giordanengo, V., Vieira, V.E., Dupont, H.T., (2020a). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 56, págs. 105-949.
Champney, W.S., Miller, M., (2002). Inhibition of 50S ribosomal subunit assembly in Haemophilus influenzae cells by azithromycin and erythromycin. Curr. Microbiol. 44, págs. 418–424.
Parnham, M.J., Haber, V.E., Giamarellos-Bourboulis, E.J., Perletti, G., Verleden, G.M., Vos, R., (2014). Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol. Ther. 143, págs. 225–245.
Thomas A. Ternesa (2003). Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Elsevier, págs.1976–1982.
Andreani, J., Le Bideau, M., Duflot, I., Jardot, P., Rolland, C., Boxberger, M., Wurtza, N., Rolain, J.-M., Colson, Ph, La Scola, B., Didier Raoult, D., (2020). In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microb. Pathog. 145, pág. 21–22.
Gautret, P., Lagier, J.-C., Parola, P., Meddeb, L., Sevestre, J., Mailhe, M., Doudier, B., Aubry, C., Amrane, S., Seng, P., (2020b.) Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: a pilot observational study. Trav. Med. Infect. Dis. 34, págs. 101-663.
Meng, Z., Wang, T., Li, C., Chen, X., Li, L., Qin, X., Li, H., Luo, J., (2020). An Experimental Trial of Recombinant Human Interferon Alpha Nasal Drops to Prevent Coronavirus Disease 2019 in Medical Staff in an Epidemic Area. MedRxiv. Preprint. págs 202-204.
Sainz Jr., B., Mossel, E.C., Peters, C., Garry, R.F., (2004). Interferon-beta and interferon- gamma synergistically inhibit the replication of severe acute respiratory syndrome- associated coronavirus (SARS-CoV). Virology 329, págs. 11–17.
Ojeda, L. A.-P.-C.-G.-R. (2020). Propuestas de tratamiento de la infección por SARS-CoV-2: análisis de la evidencia. Medicina Interna de México, págs- 670-687.
Mantlo, E.K., Bukreyeva, N., Maruyama, J., Paessler, S., Huang, C., (2020). Potent antiviral activities of Type I interferons to SARS-CoV-2 infection. Antivir. Res. 179, págs. 104-811.
Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., Doerr, H., (2003). Treatment of SARS with human interferons. Lancet 362, págs. 293–294.
Sallard, E., Lescure, F.-X., Yazdanpanah, Y., Mentre, F., Peiffer-Smadja, N., Florence, A., Yazdanpanah, Y., Mentre, F., Lescure, F.-X., Peiffer-Smadja, N., (2020). Type 1 interferons as a potential treatment against COVID-19. Antivir. Res. 178, págs. 104791.
Lokugamage, K.G., Hage, A., de Vries, M., Valero-Jimenez, A.M., Schindewolf, C., Dittmann, M., Rajsbaum, R., Menachery, V.D., (2020). Type I interferon susceptibility distinguishes SARSCoV-2 from SARS-CoV. J. Virol. págs. 1-8
Sondos Midassi, A. B. (2020). Efficient degradation of chloroquine drug by electro-Fenton oxidation:. Elsevier , págs. 1-11.
Magnus Lindroos, D. H. (2019). Continuous removal of the model pharmaceutical chloroquine from water using melanin-covered Escherichia coli in a membrane bioreactor. Elsevier , págs. 74-80.
Luca Sbardella, J. C.-R. (2018). Advanced biological activated carbon filter for removing pharmaceutically active compounds from treated wastewater. Elsevier, págs. 521-528.
Efraím A.Serna-Galvisa, J. S.-A.-C.-L.-P. (2019). Effective elimination of fifteen relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process. Elsevier, págs. 623-632.
I.C.Iakovides, b.-K. ,.-K. (2019). Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity. Elsevier , págs. 333-347.
Thomas A. Ternesa, ,. J. (2003). Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Elsevier, págs. 1976–1982.
L.Clouzota, P. D. (2010). Membrane bioreactors for 17α-ethinylestradiol removal. Elsevier, págs. 81-85.
T.A.Ternes, U. M.-D. (1990). Behavior and occurrence of estrogens in municipal sewage treatment plants I. Investigations in Germany, Canada and Brazil. Elsevier, págs. 81-90.
A C Johnson, J. P. (2001). Removal of endocrine-disrupting chemicals in activated sludge treatment works. Elsevier, págs. 697-703.
Minja Bogunović, I. I.-T. (2020). Removal of selected emerging micropollutants from wastewater treatment plant effluent by advanced non-oxidative treatment - a lab-scale case study from Serbia. Elsevier, págs. 1-47
Pignatello, J.J., Oliveros, E., & MacKay, A. (2006). Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology 36 (1), págs. 1-84.
Levchuk, I., Bhatnagar, A., & Sillanpää, M. (2014). Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water. Science of The Total Environment págs. 476-477, 415-433.
Bautista, P., Mohedano, A.F., Gilarranz, M.A., Casas, J.A., & Rodríguez, J.J. (2007). Application of Fenton oxidation to cosmetic wastewaters treatment. Journal of Hazardous Materials 143 (1- 2), págs. 128-134.
Litter, M.I., & Quici, N. (2010). Photochemical advanced oxidation processes for water and wastewater treatment. Recent Patents on Engineering 4, págs. 217-241.
Rubio-Clemente, A., Torres-Palma, R.A., & Peñuela, G.A. (2014). Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: A review. Sciences of The Total Environment 478, págs. 201-225.
Burbano, A.A., Dionysiou, D.D., & Suidan, M.T. (2008). Effect of oxidant-to-substrate ratios on the degradation of MTBE with Fenton reagent. Water Research 42 (12), págs. 3225-3239.
Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering 2 (1), págs. 557-572.
Dopar, M., Kusic, H., & Koprivanac, N. (2011). Treatment of simulated industrial wastewater by photo-Fenton process. Part I: The optimization of process parameters using design of experiments (DOE). Chemical Engineering Journal 173( 2), págs. 267-279
Vásquez, R. E. (2015). Estudio de biorreactor de membrana para el tratamiento de aguas residuales urbanas. Escuela Politécnica Superior, págs.1-99.
Langlais, B., y otros. (1992). Test on Microfiltration as a tertiary Treatment Downstrean of Fixed Bactery Filtration. s.l. : Water, Sciencie and Technology, págs.1-10
Meng, F., y otros. (2009). Recent Advances in Membrane Bioreactors (MBRs): Membrane Fouling and Membrane Material. s.l. : Water Research, págs. 1-7
Grease, S. L. (1987). Granular Activated Carbon Filter - Adsorber Systems. . Awwa, 64-74.
Seyedali Asgharzadehahmadi, A. A. (2016). Sonochemical reactors: Review on features, advantages and limitations. Elsevier, págs.302-314.
Stover. E, C. H. (2012). Manual de diseño : Desinfeccion de aguas residuales municipales. Elsevier, págs. 1-9.
María Esther Arcos Serrano, G. F. (1993). Procesos biologicos de tratamiento para la estabilizacion de residuos liquidos toxicos. Cenapred, págs. 1-101.
Félicien Mazille, D. S. (2018). Coagulación, floculación y separación. Gass Perspective , págs. 1-3.
DOI: https://doi.org/10.23857/pc.v6i8.2923
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/