Revista Polo del Conocimiento


Polo del Conocimiento

Aplicaciones en la industria automotriz de materiales reforzados con fibra natural

Andres Moreno-Constante, Abel Remache-Coyago

Resumen


La preocupación por el agotamiento de las reservas de combustibles fósiles, el aumento del calentamiento global ha llevado a una mayor investigación sobre la sustitución de fibras sintéticas por fibras naturales, y la cantidad de investigación sobre fibras naturales tiene un papel importante que desempeñar hacia un futuro sostenible y respetuoso con el medio ambiente. Además, los productos a base de fibras naturales se han incrementado sustancialmente. En este artículo se aplicó la metodología PRISMA para la revisión de la literatura disponible, que permite identificar artículos relevantes basados en fibras naturales y su aplicación en la industria automotriz, a partir de bases de datos reconocidas. Se brindó el enfoque para identificar los elementos formados en el automóvil como indicadores utilizados por los autores para este análisis. Algunas propiedades requeridas por simulación se han obtenido de la literatura, como las propiedades físicas y mecánicas de los materiales conformados para este tipo de aplicaciones automotrices y múltiples soluciones. En este documento, se presenta una revisión de las aplicaciones actuales de los compuestos de fibras naturales en diferentes usos dentro del automóvil junto con alguna información sobre el alcance futuro de la investigación en la industria.


Palabras clave


Fibra natural; automotor; polímero; aplicaciones; fabricación.

Referencias


Abuthakeer, S. S., Vasudaa, R., & Nizamudeen, A. (2016). Application of Natural Fiber Composites in Engineering Industries: A Comparative Study. Applied Mechanics and Materials, 854, 59–64.

Adesina, O. T., Jamiru, T., Sadiku, E. R., Ogunbiyi, O. F., & Beneke, L. W. (2019). Mechanical evaluation of hybrid natural fibre–reinforced polymeric composites for automotive bumper beam: a review. The International Journal of Advanced Manufacturing Technology, 103(5), 1781–1797.

AL-Oqla, F. M., Sapuan, S. M., Ishak, M. R., & Nuraini, A. A. (2015). A decision-making model for selecting the most appropriate natural fiber – Polypropylene-based composites for automotive applications. Journal of Composite Materials, 50(4), 543–556. https://doi.org/10.1177/0021998315577233

Albahash, Z. F., & Ansari, M. N. M. (2017). Investigation on energy absorption of natural and hybrid fiber under axial static crushing. Composites Science and Technology, 151, 52–61. https://doi.org/https://doi.org/10.1016/j.compscitech.2017.07.028

Albrecht, K., Baur, E., Endres, H.-J., Gente, R., Graupner, N., Koch, M., Neudecker, M., Osswald, T., Schmidtke, P., Wartzack, S., Webelhaus, K., & Müssig, J. (2017). Measuring fibre orientation in sisal fibre-reinforced, injection moulded polypropylene – Pros and cons of the experimental methods to validate injection moulding simulation. Composites Part A: Applied Science and Manufacturing, 95, 54–64. https://doi.org/https://doi.org/10.1016/j.compositesa.2016.12.022

Alhijazi, M., Safaei, B., Zeeshan, Q., Asmael, M., Eyvazian, A., & Qin, Z. (2020). Recent Developments in Luffa Natural Fiber Composites: Review. Sustainability, 12(18). https://doi.org/10.3390/su12187683

Alkbir, M. F. M., Sapuan, S. M., Nuraini, A. A., & Ishak, M. R. (2016). Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review. Composite Structures, 148, 59–73. https://doi.org/https://doi.org/10.1016/j.compstruct.2016.01.098

Antony, S., Cherouat, A., & Montay, G. (2021). Experimental Investigation of the Temperature Effect on the Mechanical Properties of Hemp Woven Fabrics Reinforced Polymer. Applied Mechanics, 2(2), 239–256. https://doi.org/10.3390/applmech2020015

Arenas, J. P. (2016). Applications of acoustic textiles in automotive/transportation. In Acoustic Textiles (pp. 143–163). Springer.

Arun, M., Vincent, S., & Karthikeyan, R. (2020). Development and characterization of sisal and jute cellulose reinforced polymer composite. Materials Today: Proceedings, 28, 556–561. https://doi.org/https://doi.org/10.1016/j.matpr.2019.12.218

Atakan, R., Sezer, S., & Karakas, H. (2018). Development of nonwoven automotive carpets made of recycled PET fibers with improved abrasion resistance. Journal of Industrial Textiles, 49(7), 835–857. https://doi.org/10.1177/1528083718798637

Awais, H., Nawab, Y., Amjad, A., Anjang, A., Md Akil, H., & Zainol Abidin, M. S. (2021). Environmental benign natural fibre reinforced thermoplastic composites: A review. Composites Part C: Open Access, 4, 100082. https://doi.org/10.1016/j.jcomc.2020.100082

Bajwa, D. S., & Bhattacharjee, S. (2016). Current Progress, Trends and Challenges in the Application of Biofiber Composites by Automotive Industry. Journal of Natural Fibers, 13(6), 660–669. https://doi.org/10.1080/15440478.2015.1102790

Barouni, A. K., & Rekatsinas, C. S. (2021). Study on the Propagation of Stress Waves in Natural Fiber Composite Strips. Journal of Composites Science, 5(1). https://doi.org/10.3390/jcs5010034

Bassyouni, M., Javaid, U., & ul Hasan, S. W. (2017). 2 - Bio-based hybrid polymer composites: A sustainable high performance material. In V. K. Thakur, M. K. Thakur, & R. K. Gupta (Eds.), Hybrid Polymer Composite Materials (pp. 23–70). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-100789-1.00002-2

Berrezueta, M. F. G., & Méndez, P. W. (2017). Polipropileno reforzado con fibra natural para fabricación de paneles internos de las puertas de un automóvil. INNOVA Research Journal, 2(10.1), 109–137.

Briceño-Martínez, B. J., Llanes Cedeño, E. A., Rocha-Hoyos, J. C., Chamba, E., Cuasapud, D., & Cárdenaz-Yánez, A. (2019). 3D printing technologies: FDM and Polyjet evaluations in the manufacture of automobile auto parts. Enfoque UTE, 10(3 SE-), 13–29. https://doi.org/10.29019/enfoque.v10n3.414

Chamba, E., Llanes, E., Cardenas, A., Vega, W., & Rocha, J. C. (2020). Analysis of the safety compartment material of a light vehicle by multi-criteria method. Enfoque UTE, 11(1 SE-), 108–118. https://doi.org/10.29019/enfoque.v11n1.492

Chand, N., & Fahim, M. (2020). Tribology of natural fiber polymer composites. Woodhead publishing.

Chegdani, F., & El Mansori, M. (2019). Tribo-functional effects of double-crossed helix on surface finish, cutting friction and tool wear mechanisms during the milling process of natural fiber composites. Wear, 426–427, 1507–1514. https://doi.org/https://doi.org/10.1016/j.wear.2018.11.026

Chegdani, F., Takabi, B., El Mansori, M., Tai, B. L., & Bukkapatnam, S. T. S. (2020). Effect of flax fiber orientation on machining behavior and surface finish of natural fiber reinforced polymer composites. Journal of Manufacturing Processes, 54, 337–346. https://doi.org/https://doi.org/10.1016/j.jmapro.2020.03.025

Chegdani, F., Takabi, B., Tai, B. L., Mansori, M. El, & Bukkapatnam, S. T. S. (2018). Thermal Effects on Tribological Behavior in Machining Natural Fiber Composites. Procedia Manufacturing, 26, 305–316. https://doi.org/https://doi.org/10.1016/j.promfg.2018.07.039

Cueva Sánchez, E. J., Lucero, J., Guzman, A., Rocha, J., & Espinoza, L. (2018). Review of the state of the art of batteries in automotive applications. Enfoque UTE, 9(1 SE-), 166–176. https://doi.org/10.29019/enfoqueute.v9n1.202

de Queiroz, H. F. M., Banea, M. D., & Cavalcanti, D. K. K. (2021). Adhesively bonded joints of jute, glass and hybrid jute/glass fibre-reinforced polymer composites for automotive industry. Applied Adhesion Science, 9(1), 1–14.

Dunne, R., Desai, D., Sadiku, R., & Jayaramudu, J. (2016). A review of natural fibres, their sustainability and automotive applications. Journal of Reinforced Plastics and Composites, 35(13), 1041–1050. https://doi.org/10.1177/0731684416633898

Gu, H. R., Kim, S. J., & Kim, H. A. (2017). Physical Properties of Eco-friendly Kenaf Fiber Imbedded Nonwoven for Automotive Pillar Trim. Procedia Engineering, 200, 45–52. https://doi.org/https://doi.org/10.1016/j.proeng.2017.07.008

Guna, V., Ilangovan, M., Vighnesh, H. R., Sreehari, B. R., Abhijith, S., Sachin, H. E., Mohan, C. B., & Reddy, N. (2019). Engineering Sustainable Waste Wool Biocomposites with High Flame Resistance and Noise Insulation for Green Building and Automotive Applications. Journal of Natural Fibers, 1–11. https://doi.org/10.1080/15440478.2019.1701610

Haghdan, S., & Smith, G. D. (2015). Fracture mechanisms of wood/polyester laminates under quasi-static compression and shear loading. Composites Part A: Applied Science and Manufacturing, 74, 114–122. https://doi.org/https://doi.org/10.1016/j.compositesa.2015.04.006

Hamidi, Y. K., Yalcinkaya, M. A., Guloglu, G. E., Pishvar, M., Amirkhosravi, M., & Altan, M. C. (2018). Silk as a Natural Reinforcement: Processing and Properties of Silk/Epoxy Composite Laminates. Materials, 11(11). https://doi.org/10.3390/ma11112135

Hariprasad, K., Ravichandran, K., Jayaseelan, V., & Muthuramalingam, T. (2020). Acoustic and mechanical characterisation of polypropylene composites reinforced by natural fibres for automotive applications. Journal of Materials Research and Technology, 9(6), 14029–14035. https://doi.org/https://doi.org/10.1016/j.jmrt.2020.09.112

Haroglu, D., Powell, N., & Seyam, A.-F. M. (2017). A textile- based optical fiber sensor design for automotive seat occupancy sensing. The Journal of The Textile Institute, 108(1), 49–57. https://doi.org/10.1080/00405000.2015.1133756

Hassan, F., Zulkifli, R., Ghazali, M. J., & Azhari, C. H. (2017). Kenaf Fiber Composite in Automotive Industry: An Overview. International Journal on Advanced Science, Engineering and Information Technology, 7(1), 315–321.

Kandola, B. K., Mistik, S. I., Pornwannachai, W., & Anand, S. C. (2018). Natural fibre-reinforced thermoplastic composites from woven-nonwoven textile preforms: Mechanical and fire performance study. Composites Part B: Engineering, 153, 456–464. https://doi.org/10.1016/j.compositesb.2018.09.013

Karacor, B., & Özcanli, M. (2020). Investigation of use of hybrid composite materials in automobile interior. International Journal of Automotive Engineering and Technologies, 9(4), 214–228.

Karolys, B., Llanes-Cedeño, E., Vega, W., Cevallos, S., & Rocha-Hoyos, J. (2019). Effect of injection parameters and emissioncharacteristics in a common-rail direct injection diesel engine in height conditions: A review. Journal of Engineering Science and Technology Review, 12(3). https://doi.org/10.25103/jestr.123.22

Kazmi, S. M. R., Das, R., & Jayaraman, K. (2014). Sheet forming of flax reinforced polypropylene composites using vacuum assisted oven consolidation (VAOC). Journal of Materials Processing Technology, 214(11), 2375–2386. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2014.04.030

Kumar, S., Gangil, B., Mer, K. K. S., Biswas, D., & Patel, V. K. (2019). Asbestos Free Braking Pads by Using Organic Fiber Based Reinforced Composites for Automotive Industries. In Automotive Tribology (pp. 327–343). Springer.

Kusić, D., Božič, U., Monzón, M., Paz, R., & Bordón, P. (2020). Thermal and Mechanical Characterization of Banana Fiber Reinforced Composites for Its Application in Injection Molding. Materials, 13(16). https://doi.org/10.3390/ma13163581

Lau, K., Hung, P., Zhu, M.-H., & Hui, D. (2018). Properties of natural fibre composites for structural engineering applications. Composites Part B: Engineering, 136, 222–233. https://doi.org/https://doi.org/10.1016/j.compositesb.2017.10.038

Lee, C. H., Padzil, F. N. B. M., Lee, S. H., Ainun, Z. M. A., & Abdullah, L. C. (2021). Potential for Natural Fiber Reinforcement in PLA Polymer Filaments for Fused Deposition Modeling (FDM) Additive Manufacturing: A Review. Polymers, 13(9). https://doi.org/10.3390/polym13091407

Li, M., Pu, Y., Thomas, V. M., Yoo, C. G., Ozcan, S., Deng, Y., Nelson, K., & Ragauskas, A. J. (2020). Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part b Engineering, 200. https://doi.org/10.1016/J.COMPOSITESB.2020.108254

Llanes-Cedeño, E. A., Peralta-Zurita, D., Pucha-Tambo, M., & Rocha-Hoyos, J. C. (2019). Caracterización mecánica a flexión de materiales compuestos con matriz fotopolimérica reforzados con fibras de abacá y cabuya mediante impresión 3D. Ingenius. Revista de Ciencia y Tecnología, 22, 100–112.

López-Alba, E., Schmeer, S., & Díaz, F. (2018). Energy Absorption Capacity in Natural Fiber Reinforcement Composites Structures. Materials, 11(3). https://doi.org/10.3390/ma11030418

Maciel, C. C., Murakami, N., & de Paiva, J. M. F. (2018). Moldagem de compósitos de pead reciclado com tecido de fibras de juta e avaliação de propriedades de flexão. Revista Iberoamericana de Polímeros, 19(5), 199–206.

Maldonado-Páez, F. E., Llanes-Cedeño, E. A., Guerrón-López, G. E., & Rocha-Hoyos, J. C. (2020). Caracterización del diseño de la suspensión inclinable para vehículos de movilidad personal. Información Tecnológica, 31(3), 87–102.

Mansor, M. R., Fadzullah, S. H. S. M., & Nurfaizey, A. H. (2021). Chapter 5 - Life cycle assessment (LCA) analysis of composite products in automotive applications. In S. M. Sapuan & R. A. Ilyas (Eds.), Biocomposite and Synthetic Composites for Automotive Applications (pp. 147–172). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-820559-4.00005-5

Mastura, M. T., Sapuan, S. M., Mansor, M. R., & Nuraini, A. A. (2017a). Conceptual design of a natural fibre-reinforced composite automotive anti-roll bar using a hybrid approach. The International Journal of Advanced Manufacturing Technology, 91(5), 2031–2048.

Mastura, M. T., Sapuan, S. M., Mansor, M. R., & Nuraini, A. A. (2017b). Environmentally conscious hybrid bio-composite material selection for automotive anti-roll bar. The International Journal of Advanced Manufacturing Technology, 89(5–8), 2203–2219.

Mulenga, T. K., Ude, A. U., & Vivekanandhan, C. (2021). Techniques for Modelling and Optimizing the Mechanical Properties of Natural Fiber Composites: A Review. Fibers, 9(1). https://doi.org/10.3390/fib9010006

Oliveira, M. S., Luz, F. S. da, Teixeira Souza, A., Demosthenes, L. C. da C., Pereira, A. C., Filho, F. da C. G., Braga, F. de O., Figueiredo, A. B.-H. da S., & Monteiro, S. N. (2020). Tucum Fiber from Amazon Astrocaryum vulgare Palm Tree: Novel Reinforcement for Polymer Composites. Polymers, 12(10). https://doi.org/10.3390/polym12102259

Oliver-Borrachero, B., Sánchez-Caballero, S., Fenollar, O., & Sellés. (2019). Natural-Fiber-Reinforced Polymer Composites for Automotive Parts Manufacturing. Key Engineering Materials, 793, 9–16.

Paredes Salinas, J. G., Pérez Salinas, C. F., & Castro Miniguano, C. B. (2017). Análisis de las propiedades mecánicas del compuesto de matriz poliéster reforzado con fibra de vidrio 375 y cabuya aplicado a la industria automotriz. Enfoque UTE, 8(3), 1–15.

Park, S.-Y., Hong, C.-Y., Kim, S.-H., Choi, J.-H., Kwon, O., Lee, H.-J., & Choi, I.-G. (2018). Photodegradation of Natural Wood Veneer and Studies on Its Color Stabilization for Automotive Interior Materials. Journal of Wood Chemistry and Technology, 38(4), 301–312. https://doi.org/10.1080/02773813.2018.1488872

Partanen, A., & Carus, M. (2016). Wood and natural fiber composites current trend in consumer goods and automotive parts. Reinforced Plastics, 60(3), 170–173. https://doi.org/10.1016/J.REPL.2016.01.004

Pruna, L., Velasco, F., Chachapoya, F., & Paredes, C. (2020). Elaboración de la fibra de cabuya en tejido plano como matriz de refuerzo para la construcción de un retrovisor. Ingenius. Revista de Ciencia y Tecnología, 24, 81–86.

Qin, Y., Summerscales, J., Graham-Jones, J., Meng, M., & Pemberton, R. (2020). Monomer Selection for In Situ Polymerization Infusion Manufacture of Natural-Fiber Reinforced Thermoplastic-Matrix Marine Composites. Polymers, 12(12). https://doi.org/10.3390/polym12122928

Quitiaquez, W., Simbaña, I., Isaza-Roldán, C. A., Quitiaquez, P., Nieto-Londoño, C., & Toapanta-Ramos, F. (2020). Review of the state of art of DX-SAHP systems to obtain domestic hot water. Enfoque UTE, 11(2 SE-), 29–46. https://doi.org/10.29019/enfoque.v11n2.565

Santosh Gangappa, G., & Sripad Kulkarni, S. (2021). Experimentation and validation of basalt & jute fiber reinforced in polymer matrix hybrid composites. Materials Today: Proceedings, 38, 2372–2379. https://doi.org/https://doi.org/10.1016/j.matpr.2020.07.081

Şardağ, S., & Türk, M. (2020). Thermo-physiological properties and burning behaviours of automotive upholstery fabrics woven with aramid and wool yarns. Journal of Industrial Textiles, 1528083720974042. https://doi.org/10.1177/1528083720974042

Shah, D. U., Porter, D., & Vollrath, F. (2014). Opportunities for silk textiles in reinforced biocomposites: Studying through-thickness compaction behaviour. Composites Part A: Applied Science and Manufacturing, 62, 1–10. https://doi.org/https://doi.org/10.1016/j.compositesa.2014.03.008

Sharma, S., Sudhakara, P., Misra, S. K., & Singh, J. (2020). A comprehensive review of current developments on the waste-reinforced polymer-matrix composites for automotive, sports goods and construction applications: Materials, processes and properties. Materials Today: Proceedings, 33, 1671–1679.

Silva, A. L. da, Silva, L. R. R. da, Camargo, I. de A., Agostini, D. L. da S., Rosa, D. dos S., Oliveira, D. L. V. de, Fechine, P. B. A., & Mazzetto, S. E. (2016). Cardanol-based thermoset plastic reinforced by sponge gourd fibers (Luffa cylindrica). Polímeros, 26(1), 21–29.

Tarrés, Q., Oliver-Ortega, H., Alcalà, M., Espinach, F. X., Mutjé, P., & Delgado-Aguilar, M. (2020). Research on the Strengthening Advantages on Using Cellulose Nanofibers as Polyvinyl Alcohol Reinforcement. Polymers, 12(4). https://doi.org/10.3390/polym12040974

Todkar, S. S., & Patil, S. A. (2019). Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Composites Part B: Engineering, 174, 106927. https://doi.org/https://doi.org/10.1016/j.compositesb.2019.106927

Upadhyay, R. K., & Kumar, A. (2021). Tribological Properties of Composite Materials for Automotive Applications. In Tribological Applications of Composite Materials (pp. 51–69). Springer.

Vadiraj, A., Abraham, M., & Bharadwaj, A. S. (2019). Trends in automotive light weighting. In Light Weighting for Defense, Aerospace, and Transportation (pp. 89–102). Springer.

Verma, D., & Senal, I. (2019). Natural fiber-reinforced polymer composites: Feasibiliy study for sustainable automotive industries. In Biomass, Biopolymer-Based Materials, and Bioenergy (pp. 103–122). Elsevier.

Wirth, S., Niebling, F., Logasanjeevi, U., & Premchandran, V. (2016). Improved Thermal Insulation for Contemporary Automotive Roof Structures Based on a Computational Fluid Dynamics Heat Flux Approach. Heat Transfer Engineering, 37(16), 1418–1426. https://doi.org/10.1080/01457632.2015.1136170

Wu, Y., Xia, C., Cai, L., Garcia, A. C., & Shi, S. Q. (2018). Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound. Journal of Cleaner Production, 184, 92–100.

Yusof, N. S. B., Sapuan, S. M., Sultan, M. T. H., & Jawaid, M. (2020). Conceptual design of oil palm fibre reinforced polymer hybrid composite automotive crash box using integrated approach. Journal of Central South University, 27(1), 64–75.

Yusuff, I., Sarifuddin, N., & Ali, A. M. (2021). A review on kenaf fiber hybrid composites: Mechanical properties, potentials, and challenges in engineering applications: Progress in Rubber Plastics and Recycling Technology, 37(1), 66–83.


Texto completo: PDF HTML XML

DOI: 10.23857/pc.v6i6.2749

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia




Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: [email protected][email protected]

URL: https://www.polodelconocimiento.com/

 

 

            



Top