Effect of curing conditions on compressive strength behavior on alkali-activated ceramic wastes

Norma Yolanda Gaibor-Vaca, Dinis Miguel Campos-Leitão, Tiago Miranda, Vítor Cunha, Nuno Cristelo

Resumen


The industrial sector is responsible for the generation of a large amount of solid waste, of which some is partially recycled, but the majority is deposited in landfills or landfills causing various negative impacts on the environment. Alkaline cements are attracting growing interest for their potential to allow the industry to operate within the constraints imposed on CO2 emissions. The objective of this research was to know the effect of different curing conditions on the compressive strength behavior of alkaline activated ceramic residues. As a result, it was determined that an alkali-activated matrix is significantly influenced when cured at a temperature of 70 ° C, reaching, at 90 days of age, a compressive strength of up to 39.3 MPa in contrast to 27.08 MPa. when curing was carried out in environmental conditions of 20 ° C (± 0.5 ° C) and 60% (± 5%) of relative humidity (RH). This work was complemented with a microstructural analysis that included Scanning Electron Microscopy (SEM) and X-ray Energy Dispersion Analyzer (EDX).


Palabras clave


Ceramic waste; alkali activation; compressive strength.

Texto completo:

PDF HTML XML

Referencias


Amin, S. K., El–Sherbiny, S. A., El–Magd, A. A. M. A., Belal, A., & Abadir, M. F. (2017). Fabrication of geopolymer bricks using ceramic dust waste. Construction and Building Materials, 157, 610–620. https://doi.org/10.1016/j.conbuildmat.2017.09.052

Arbi, K., Nedeljković, M., Zuo, Y., & Ye, G. (2016). A Review on the Durability of Alkali-Activated Fly Ash/Slag Systems: Advances, Issues, and Perspectives. Industrial & Engineering Chemistry Research, 55(19), 5439–5453. https://doi.org/10.1021/acs.iecr.6b00559

ASTM C39 / C39M - 18. Standard test method for compressive strength of cylindrical concrete

specimens. Active Standard ASTM C39 / C39M (2018).

Azevedo, A. R. G., Vieira, C. M. F., Ferreira, W. M., Faria, K. C. P., Pedroti, L. G., & Mendes, B. C. (2020). Potential use of ceramic waste as precursor in the geopolymerization reaction for the production of ceramic roof tiles. Journal of Building Engineering, 29, 101156. https://doi.org/10.1016/j.jobe.2019.101156

Collins, F., & Sanjayan, J. G. (2001). Microcracking and strength development of alkali activated slag concrete. Cement and Concrete Composites, 345–352. https://doi.org/10.1016/S0958-9465(01)00003-8

Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. J. (2006). Geopolymer technology: the current state of the art. Journal of Materials Science, 42(9), 2917–2933. https://doi.org/10.1007/s10853-006-0637-z

ECCA; (2017) The position of Latin America in the context of circular economy - ECCA.

Gaibor, N., Leitão, D., Miranda, T., & Cristelo, N. (2019). Development of alkali activated ceramic residue and fly ash blends. Wastes: Solutions, Treatments and Opportunities III, 591–599. https://doi.org/10.1201/9780429289798-94

Huseien, G. F., Sam, A. R. M., Shah, K. W., Asaad, M. A., Tahir, M. M., & Mirza, J. (2019). Properties of ceramic tile waste based alkali-activated mortars incorporating GBFS and fly ash. Construction and Building Materials, 214, 355–368. https://doi.org/10.1016/j.conbuildmat.2019.04.154

Hwang, C.-L., Damtie Yehualaw, M., Vo, D.-H., & Huynh, T.-P. (2019). Development of high-strength alkali-activated pastes containing high volumes of waste brick and ceramic powders. Construction and Building Materials, 218, 519–529. https://doi.org/10.1016/j.conbuildmat.2019.05.143

Kovalchuk, G., Fernández-Jiménez, A., & Palomo, A. (2007). Alkali-activated fly ash: Effect of thermal curing conditions on mechanical and microstructural development – Part II. Fuel, 86(3), 315–322. https://doi.org/10.1016/j.fuel.2006.07.010

Krivenko, P. V., & Kovalchuk, G. Y. (2002). Fly ash based zeolite cements. Innovations and Developments in Concrete Materials and Construction, 123-132.

Krivenko, P. V., & Kovalchuk, G. Y. (2002). Fly ash based zeolite cements. Innovations and Developments in Concrete Materials and Construction, 123-132.

Puertas, F., Barba, F., Gazulla, A., Gómez, M., Palacios, M., & Martínez, S. (2006). Ceramic wastes as raw materials in Portland cement clinker fabrication.• characterization and alkaline activation. (IETCC) Artículos, 1. https://digital.csic.es/bitstream/10261/86998/1/Materiales%20de%20Construcci%c3%b3n%2056%20%28281%29%2073-84%20%282006%29.pdf

Reig, L., Tashima, M., Soriano, L., Borrachero, M., Monzó, J., & Payá, J. (2013). Alkaline Activation of Ceramic Waste Materials. Waste and Biomass Valorization, 729–736. https://doi.org/10.1007/s12649-013-9197-z

Rivera, J. F., Cuarán-Cuarán, Z. I., Vanegas-Bonilla, N., & Mejía de Gutiérrez, R. (2018). Novel use of waste glass powder: Production of geopolymeric tiles. Advanced Powder Technology, 29(12), 3448–3454. https://doi.org/10.1016/j.apt.2018.09.023

Seco, A., Omer, J., Marcelino, S., Espuelas, S., & Prieto, E. (2018). Sustainable unfired bricks manufacturing from construction and demolition wastes. Construction and Building Materials, 167, 154–165. https://doi.org/10.1016/j.conbuildmat.2018.02.026

Senthamarai, R. M., & Devadas Manoharan, P. (2005). Concrete with ceramic waste aggregate. Cement and Concrete Composites, 27(9–10), 910–913. https://doi.org/10.1016/j.cemconcomp.2005.04.003

Shoaei, P., Musaeei, H. R., Mirlohi, F., Narimani zamanabadi, S., Ameri, F., & Bahrami, N. (2019). Waste ceramic powder-based geopolymer mortars: Effect of curing temperature and alkaline solution-to-binder ratio. Construction and Building Materials, 227, 116686. https://doi.org/10.1016/j.conbuildmat.2019.116686

Soltanzadeh, F., Cunha, V. M. C. F., & Barros, J. A. O. (2019). Assessment of different methods for characterization and simulation of post-cracking behavior of self-compacting steel fiber reinforced concrete. Construction and Building Materials, 227, 116704. https://doi.org/10.1016/j.conbuildmat.2019.116704

Villaquirán-Caicedo, M. A., & de Gutiérrez, R. M. (2018). Synthesis of ceramic materials from ecofriendly geopolymer precursors. Materials Letters, 230, 300–304. https://doi.org/10.1016/j.matlet.2018.07.128

Wang, H., Chen, Z., Liu, L., Ji, R., & Wang, X. (2018). Synthesis of a foam ceramic based on ceramic tile polishing waste using SiC as foaming agent. Ceramics International, 44(9), 10078–10086. https://doi.org/10.1016/j.ceramint.2018.02.211




DOI: https://doi.org/10.23857/pc.v6i3.2416

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/