Inteligencia artificial como aliada pedagógica: experiencias y proyecciones en el bachillerato Ecuatoriano

Fabiola Lisbeth Figueroa Moreno, María Elena León Araujo, Cecilia Stefania Valdez Perdomo, Fanny Loreida Troya Pazmiño

Resumen


La Inteligencia Artificial (IA) se convierte en una prioridad estratégica para la revolución educativa global. Este documento examina el poder y la perspectiva de la IA como un aliado pedagógico aplicado al caso del Bachillerato Ecuatoriano. Se describen los fundamentos teóricos en primer lugar, principalmente la IA Centrada en el Ser Humano (HCAI) y el Análisis del Aprendizaje (LA) como ejes éticos y metodológicos para llevar a cabo este tipo de estudios.

Mediante el examen de experiencias locales similares, como las implicaciones para la personalización en los MOOCs para profesionales ecuatorianos y las políticas de habilitación docente, y criticando la confiabilidad de la IA generativa, se identifican principios básicos para implementar de manera efectiva. Los resultados empíricos destacan la importancia de dicha inversión en el diseño "mobile-first" y la inversión de dos niveles en la alfabetización digital docente, ya que la edad afecta el rendimiento en lo digital.

El cierre destaca la necesidad urgente de solidificar una base de ética de datos de acuerdo con HCAI, así como la integración curricular de la Alfabetización en IA, para que la tecnología pueda mejorar, pero no reemplazar la intervención pedagógica humana.


Palabras clave


Inteligencia artificial; bachillerato ecuatoriano; análisis del aprendizaje; personalización; HCAI.

Texto completo:

PDF HTML

Referencias


Alfredo, R., Echeverria, V., Jin, Y., Yan, L., Swiecki, Z., Gašević, D., & Martinez-Maldonado, R. (2024). Human-centred learning analytics and AI in education: A systematic literature review. Computers and Education: Artificial Intelligence, 6, 100215. doi:https://doi.org/10.1016/j.caeai.2024.100215

Bora, G., Kumar, R., & Joseph, A. (2024). Early identification of potentially low performing community health workers using an ensemble classification model. International Journal of Productivity and Performance Management, 74(6), 2053-2070. doi:https://doi.org/10.1108/IJPPM-02-2024-0116

Bravo-Moncayo, L., Lucio-Naranjo, J., Chávez, M., Pavón-García, I., & Garzón, C. (2019). A machine learning approach for traffic-noise annoyance assessment. Applied Acoustics, 156, 262-270. doi:https://doi.org/10.1016/j.apacoust.2019.07.010

Bustamante-León, M., Herrera, P., Domínguez-Granda, L., García-Angulo, A. C., De Cock, A., Schellens, T., . . . Valcke, M. (2025). From screens to streams: Can personalized MOOCs enhance drinking water operations? - A pilot study in Ecuador. Environmental Challenges, 20, 101252. doi:https://doi.org/10.1016/j.envc.2025.101252

Cherrez-Ojeda, I., Faytong-Haro, M., Alvarez-Muñoz, P., Larco, J. I., de Arruda Chaves, E., Rojo, I., . . . Robles-Velasco, K. (2025). How accurate are ChatGPT-4 responses in chronic urticaria? A critical analysis with information quality metrics. World Allergy Organization Journal, 18(7), 101071. doi:https://doi.org/10.1016/j.waojou.2025.101071

Clorion, F. D. D., Fuentes, J. O., Suicano, D. J. B., Estigoy, E. B., Serdenia, J. R. C., Alejandrino, P., . . . Alieto, E. O. (2025). Smartphones and Syntax: A Quantitative Study on Harnessing the Role of Mobile-Assisted Language Learning in the Digital Classroom and Applications for Language Learning. Procedia Computer Science, 257, 7-14. doi:https://doi.org/10.1016/j.procs.2025.03.004

Correa-Peralta, M., Vinueza-Martínez, J., & Castillo-Heredia, L. (2025). Evolution, topics and relevant research methodologies in business intelligence and data analysis in the academic management of higher education institutions. A literature review. Results in Engineering, 25, 103782. doi:https://doi.org/10.1016/j.rineng.2024.103782

EDUCATION. (2023). Laboratory Investigation, 103(3, Supplement), 100086. doi:https://doi.org/10.1016/j.labinv.2023.100086

Griesi, J. M., Bernardes, J. M., Alonso, M., Gómez-Salgado, J., Ruiz-Frutos, C., Fagundo-Rivera, J., . . . Dias, A. (2024). Risk perception of healthcare workers in the first wave of the COVID-19 pandemic in Brazil. Heliyon, 10(3), e25297. doi:https://doi.org/10.1016/j.heliyon.2024.e25297

Herrera-Franco, G., Peña-Villacreses, G., & Bravo-Montero, L. (2025). Women's participation in the research development of a country. International Journal of Educational Research Open, 8, 100413. doi:https://doi.org/10.1016/j.ijedro.2024.100413

Ibarra-Torres, F., Caiza, G., García, M. V., & Barona-Pico, V. (2024). Use of basic programming tools to foster programming logic in university students with school preparation other than computer science. Procedia Computer Science, 237, 413-419. doi:https://doi.org/10.1016/j.procs.2024.05.122

Malki, A., Atlam, E.-S., Hassanien, A. E., Ewis, A., Dagnew, G., & Gad, I. (2022). SARIMA model-based forecasting required number of COVID-19 vaccines globally and empirical analysis of peoples’ view towards the vaccines. Alexandria Engineering Journal, 61(12), 12091-12110. doi:https://doi.org/10.1016/j.aej.2022.05.051

McCausland, H. C., Nasser, J. A., & LaFata, E. M. (2026). A narrative review of public and expert perceptions of ultra-processed foods: Knowledge, opinions, and educational directions. Appetite, 216, 108273. doi:https://doi.org/10.1016/j.appet.2025.108273

Melo, G. L. R., Santo, R. E., Mas Clavel, E., Bosque Prous, M., Koehler, K., Vidal-Alaball, J., . . . Agostinis-Sobrinho, C. (2025). Digital dietary interventions for healthy adolescents: A systematic review of behavior change techniques, engagement strategies, and adherence. Clinical Nutrition, 45, 176-192. doi:https://doi.org/10.1016/j.clnu.2025.01.012

Messner, W. (2025). Quantification of cultural practices and diversity: An empirical experiment with generative artificial intelligence. Journal of World Business, 60(3), 101622. doi:https://doi.org/10.1016/j.jwb.2025.101622

Mohammadi, M., Tajik, E., Martinez-Maldonado, R., Sadiq, S., Tomaszewski, W., & Khosravi, H. (2025). Artificial intelligence in multimodal learning analytics: A systematic literature review. Computers and Education: Artificial Intelligence, 8, 100426. doi:https://doi.org/10.1016/j.caeai.2025.100426

Monlezun, D. J. (2023). Chapter 9 - The future’s (AI) thinking healthcare system: blueprint, roadmap, and DNA. In D. J. Monlezun (Ed.), The Thinking Healthcare System (pp. 263-303): Academic Press.

Natalia, P.-Z., Elena, V., & Roberto, B.-G. (2024). Gamification in technology and design areas: A teaching innovation project in a fully online environment. Entertainment Computing, 51, 100728. doi:https://doi.org/10.1016/j.entcom.2024.100728

Ordoñez-Avila, R., Salgado Reyes, N., Meza, J., & Ventura, S. (2023). Data mining techniques for predicting teacher evaluation in higher education: A systematic literature review. Heliyon, 9(3), e13939. doi:https://doi.org/10.1016/j.heliyon.2023.e13939

Sapre, M., Elaiho, C. R., Brar Prayaga, R., Prayaga, R., Constable, J., & Vangeepuram, N. (2024). The Development of a Text Messaging Platform to Enhance a Youth Diabetes Prevention Program: Observational Process Study. JMIR Formative Research, 8. doi:https://doi.org/10.2196/45561

Senna, D. A., Moreira, V. R., Amaral, M. C. S., de Paula, E. C., Pereira, L. P., Batista, R. M. G., . . . Rezende, S. (2023). Industry 4.0 as a strategy to contribute to the water supply universalization in developing countries. Journal of Environmental Chemical Engineering, 11(6), 111198. doi:https://doi.org/10.1016/j.jece.2023.111198

Solberg, M. (2018). Can the implementation of aerospace science in elementary school help girls maintain their confidence and engagement in science as they transition to middle school? Acta Astronautica, 147, 462-472. doi:https://doi.org/10.1016/j.actaastro.2018.03.043

Tadesse, M. D., Gebresenbet, G., Ljungberg, D., & Tavasszy, L. (2025). The technology acceptance model for digitalised logistics in low-income countries: The case of Ethiopia. Research in Transportation Business & Management, 63, 101507. doi:https://doi.org/10.1016/j.rtbm.2025.101507

Ticona, J. J., Nonato, L. G., Silva, C. T., & Gomez-Nieto, E. (2025). SDR-Explorer: A user-friendly visual tool to support preventing student dropouts in higher education. Computers & Graphics, 132, 104375. doi:https://doi.org/10.1016/j.cag.2025.104375

Vera, C. H. R., Quiñónez, B. F. C., Cevallos, F. J. Q., & Tambaco, R. M. L. (2024). Influencia de la transformación digital en la educación superior del Ecuador. Maestro y Sociedad, 21(2), 861-865.

Webb, D., Olaru, D., & Rastin, C. (2025). Unlocking motivation for energy saving: A study of German electricity consumer segments. Energy Research & Social Science, 125, 104082. doi:https://doi.org/10.1016/j.erss.2025.104082




DOI: https://doi.org/10.23857/pc.v10i10.10564

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/