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Resumen 

En este documento, nuestro objetivo es centrarnos en alguna noción básica sobre el 

Aprendizaje por Refuerzo particularmente el algoritmo Q-learning. Luego cruzaremos el 

marco de RL dentro de la tecnología Neural Network, ya que un entorno de estado fuerte 

como los videojuegos no se puede administrar dentro de una simple optimización de la tabla 

Q. Este proceso de acoplamiento les da nacimiento a la Deep-Q-Network (DQN) que son la 

primera etapa de la llamada "Inteligencia Artificial". Vamos a aprovechar el algoritmo Vanilla 

DQN como punto de referencia y presentaremos las mejoras DQN más famosas y las 

clasificaremos dentro de la mejora de pérdida de error TD o la mejora de arquitectura: Double 

Deep Q-Network, Dueling Network, Priority Experience Replay, RL distributional, Dueling 

Network, aprendizaje Multi-Step Q. Cómo podemos combinarlos genuinamente para superar 

todos los algoritmos de márgenes y nuestro benchmark Vanilla DQN, llamaremos a esta 

combinación inteligente de todas estas mejoras como el agente Rainbow. Analizaremos su 

rendimiento utilizando líneas de base y comprenderemos el peso efectivo de cada componente 

mediante el método de ablación. También se examinaría el establecimiento de la metodología 

de los hiperparámetros. Se daría un código y una aplicación para la mayoría de los métodos. 

Nuestro punto de partida es el artículo de Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., 

Ostrovski, G., Dabney, W., & Silver, D. (2018, April), del cual tomamos la iniciativa de 

enfatizar un poco este efecto de investigación ilustrando el uso extensivo del agente de 

Rainbow en la mayoría de los concursos de Game como Sonic podría testificar. 

Palabras clave: Agente Rainbow; Framework RL; Algoritmo Vanilla DQN. 

 

Abstract 

In this document, we aim to focus on some basic notion about the Q Reinforcement Learning 

Algorithm. Then we will cross the RL framework within the Neural Network technology since 

a strong state environment like video games cannot be managed within a simple optimization 
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of the Q table. This coupling process gives birth to the Deep-Q-Network (DQN) which are the 

first stage of the so-called "Artificial Intelligence". We will exploit the Vanilla DQN algorithm 

as a benchmark and present the most famous DQN improvements and classify them within the 

TD error Improved loss or improved architecture: Double Deep Q-Network, Dueling Network, 

Priority Experience Replay, Distributional RL, Dueling Network, Multi-Step Q learning. How 

we can genuinely combine them to overcome all the margin algorithms and our benchmark 

Vanilla DQN, we will call this intelligent combination of all these enhancements the Rainbow 

agent. We will analyze their performance using baselines and understand the effective weight 

of each component using the ablation method. The establishment of the hyperparameter 

methodology would also be considered. A code and application would be provided for most 

methods. Our starting point is the article by Hessel, M., Modayil, J., Van Hasselt, H., Schaul, 

T., Ostrovski, G., Dabney, W., & Silver, D. (2018, April), of which we took the initiative to 

emphasize a little this research effect by illustrating the extensive use of the Rainbow agent in 

most Game contests as Sonic might testify. 

Keywords: Rainbow agent; RL framework; Vanilla DQN Algorithm. 

 

Resumo  

Neste documento, nosso objetivo é focar em algumas noções básicas sobre Aprendizado por 

Reforço, particularmente o algoritmo Q-learning. Em seguida, cruzaremos o framework RL 

para a tecnologia Neural Network, pois um ambiente de estado forte como videogames não 

pode ser gerenciado dentro de uma simples otimização Q-table. primeira etapa da chamada 

"Inteligência Artificial". Vamos tomar o algoritmo Vanilla DQN como referência e introduzir 

as melhorias DQN mais famosas e classificá-las em melhoria de perda de erro TD ou melhoria 

de arquitetura: Double Deep Q-Network, Dueling Network, Priority Experience Replay, RL 

Distribution, Dueling Network, Aprendizado em várias etapas Q. Como podemos combiná-los 

genuinamente para superar todos os algoritmos de margem e nosso benchmark Vanilla DQN, 

chamaremos essa combinação inteligente de todas essas melhorias como o agente Rainbow. 

Analisaremos seu desempenho usando linhas de base e entenderemos o peso efetivo de cada 
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componente usando o método de ablação. O estabelecimento da metodologia de 

hiperparâmetros também seria considerado. Código e implementação seriam fornecidos para a 

maioria dos métodos. Nosso ponto de partida é o artigo de Hessel, M., Modayil, J., Van 

Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., & Silver, D. (2018, abril), de que tomamos 

a iniciativa de enfatizar um pouco esse efeito de pesquisa, ilustrando o uso extensivo do agente 

da Rainbow na maioria dos concursos de jogos, como o Sonic pôde testemunhar.  

Palavras-chave: Rainbow Agent; RL Framework; Algoritmo Vanilla DQN. 

  

Introducción 

Q-learning Algorithm and SARSA. Q-Learning is a Value-based Reinforcement Learning 

algorithm with off policy selection.  SARSA is a Value-based Reinforcement Learning 

algorithm with on policy selection. Legitimate question can appear, what is the difference 

between both algorithms. Let first introduce the Q function, Q reminding the “Quality of the 

action”, at this stage one can imagine that Q-learning Algorithm would be an enriched Value 

functional within the knowledge of the action. The Action Value Function (or “Q-function”) 

takes two inputs: “state” and “action”. It returns the expected future reward of that action at 

that state.  

                                                                      (1) 

 

We remind that both SARSA and Q-learning are Value-Based Algorithm, the main difference 

is that they differ in term of policy. On-policy and off-policy learning are only related to the 

only one task: evaluating , then starting from this common point, the procedure 

diverge in term of methodology. 

1. In Q-learning that is a learning, the  function is learned from different actions 

(for example, random actions). We even don’t need a policy at all. 

                            (2) 
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2. In SARSA on policy learning the  function is learned from actions, we acted 

using our current policy π, we learn using the TD framework: 

                            (3) 

where  is the action that was taken to policy choice π. 

We remind that the Update policy is how your agent learns the optimal policy, and behavior 

policy is how your agent behaves. 

3. In Q-Learning, the agent learns optimal policy using absolute greedy policy and behaves 

using other policies such as ϵ - greedy policy. As the update policy is different to the behavior 

policy, so Q-Learning is off-policy. 

4. In SARSA, the agent learns optimal policy and behaves using the same policy such as ϵ - 

greedy policy. As the update policy is the same to the behavior policy, so SARSA is on-

policy. 

At this stage, we will now focus on the Q-learning Algorithm and we will try to understand 

how we can improve most of its weakness when environment is quite heavy in term of size, 

this will lead us to consider Deep Q network.  

First let have some familiarity within the Q-table output by the Q-learning Algorithm. 

Q-table and Q-learning algorithm procedure: The task is to build a table where we are 

mandated to compute the maximum expected future reward, for each action at each state.  

Q-table is a matrix within row are flagged as the states and the column are flagged as actions. 

Q-table is just a matrix of storage for the  at each time step. The value of each element 

of the matrix would then be the maximum expected future reward for that given state and 

action. Each Q-table score will be the maximum expected future reward that the agent would 

get if he took an action at a particular state with the best policy already fixed. We remind that 

Q-learning is an off policy so in practice, we don’t implement a policy, instead of that, we just 

improve our Q-table to always choose the best action. 

Now we proceed to indicate how we calculate the table at each time step: 

• Step 1: Initialization 
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We build a Q-table, with n rows (n = # of states), p cols (p = # of actions). We initialize 

by setting all the values at 0. 

             

                                          (4) 

where the first two columns are the states and the other two columns the actions. 

• Step 2: Choose an action, to repeat till the learning procedure is stopped. 

Then we show how we can select an action from the uniform null states. Let us first use the ϵ-

greedy policy. 

• We specify an exploration rate ϵ, which we set to 1 in the beginning. This is the rate of 

steps that we’ll do randomly. In the beginning, this rate must be at its highest value, 

because we don’t know anything about the values in Q-table and we want to force the 

exploration phase. Picking high value of ϵ means we need to do a lot of exploration, by 

randomly choosing our actions. 

• We generate a random number. If this number > ϵ, then we will do “exploitation” phase 

(we use what we already know to select the best action at each step). Else, we will 

switch to exploration. 

1. The strategy is a phase selection is set such that we must have a big epsilon at the 

beginning of the training of the Q-function, then, reduce it progressively as the agent becomes 

more confident at estimating Q-values. 

Short Term we make the choice to be exploratory and then gaining confidence to be more 

exploitative on longer term horizon. 

• Step 3 & 4: Take an action and Update the Q-table. 

We take the action a that we chose in the previous step 2, and then performing this  action 

returns us a new state  and a reward r, then we update the function  using 

Selection is done in respect of that rule: For all possible actions from  the state select the 

one with the highest Q-Value.  
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a 

                               

Here is the pseudo code procedure for the Q-learning Algorithm: 

1. Initialization of the Q-values for all states and actions couples. 

While learning is not stopped do: 

2. Choose an action  in the current observed state environment based on the current Q-

value estimates  within ϵ - greedy policy modularity. 

3. Take the selected action a coming from step 2 and observe the nature of the new outcome 

state and reward r. 

4. Update the Q-function using the Bellman equation: 
 

(5) 

To resume a bit: the Q-learning algorithm is based on a production and updating a Q-table, we 

fill this table in aim to find a maximum expected future reward. 

As we are more familiar within the Q-learning Algorithm, natural question can then income, what 

would happen for a huge Q-table matrix. We can imagine that we could be interacting in a 

complex video game like in a shoot them all or a platform one like Sonic, Mario, or Doom, 

where the environment set is highly dimensioned (around 10e6 of different states). Creating or 

updating a Q-table for that kind of game would clearly not be efficient at all. We must revisit 

the problem using Deep-Neural Network technology in aim to retrieve the Q-value of the 

actions. 

Create Neural Network that will approximate for a given state the different Q-values for each 

action. We then combine the Q-learning to Deep neural network giving then the Deep Q- 

Network Algorithm (DQN). 

 

Computation of Q-learning Algorithm application to openai Gym / Retro in 

Python 

We will in this section give some material that would allow the user to train an agent in an old 

school video game environment. Our study has been done in Windows 10 environments using 
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Anaconda 3 package with Python version 3.7. Also, you must install or to be more specific. 

You can install it by running pip install gym[atari]. 

We will then describe here some of functionalities of the OpenAI gym package. We illustrate it 

shortly as https://www.gymlibrary.ml/content/api/ does it better and is complete in term of user 

guidelines.  

Here’s a bare minimum example of getting something running. This will run an instance of the 

MsPacman-v0 environment for 1000-time steps, rendering the environment at each step. You 

should see a window pop up rendering the classic PacMan adventure. 

Every Gym environment will return these same four variables after an action is taken, as they 

are the core variables of a reinforcement learning problem. 

 

Source: Own elaboration 

Figure 1: Result of python render exit for Pacman 

 

For Pacman, we can clearly not use the Q-learning Algorithm as the environment state is quite 

large: there is a total of 33,600 pixels with three RGB values that can have a range from 0 to 

255. But we will run it within Taxi-v3 game, below we report the Q-learning Computation for 

2K episodes starting from a reward strongly negative and progressively increasingly during 

experience. 
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Source. Own elaboration 

 

 

 

 

 

 

 

 

Figure 2: Taxi-v3 environment and the result of python render exit for Taxi-V3 

 

Within the Q-table filling: 

 

Figure 3: Filling of the Q-table 
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The modularity of the Q-learning Algorithm is driven by the variability of the Hyper 

parameters of the methods. 

▪ Learning Rate α, empirical study during the training phase would suggest a decreasing 

time depends on structure. 

The larger the learning rate, the stronger is the influence of new data for updating. 

▪ Discount Factor γ, empirical study during the training phase would also suggest a 

decreasing time depends on structure. 

It allows to allocate a smaller weight on future reward. 

▪ Exploration or Exploitation trade off ε in the ε- greedy off policy for the Q-learning, 

empirical study during the training phase would also suggest a decreasing time depends on 

structure. 

The Epsilon parameter could be seen as a probability to exercise an exploratory phase during 

the learning procedure. 

 

Hyper parameters tuning for Q-learning Algorithm and application to Taxi-V3 

from openai gym  

Learning Rate α effect: We will consider the case where gamma and epsilon would be fixed 

first, in aim to avoid being so much exploratory, we will keep epsilon close to 0.1, we will 

explain this choice a bit later, we remind that as we restricted the exploratory probability the 

computation is also less greedy. We will also publish another score measure that will the 

average score pro-rated by time; we will call it score over the time. 

In the next graphic sequence, we will restrict our visualization on 2k episodes but computation 

has been done with 10k episodes step, we will first marginally have a idea of the learning rate 

parameter sensitivity. 
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Source. Own elaboration 

 

 

 

 

 

 

 

Figure 4: Q-learning Agent Performance with α sensitivity for γ = 0.65, ε = 0.1, Episodes=10k 

 

Source. Own elaboration 

 

Figure 5: Q-learning Agent Performance with score over time = [-0.5,-1.01,-2.8] for decreasing α 

 

 

Figure 6: Q-learning Agent Performance with score over time = [-1.01, -4.5 ,-118.8] for decreasing α 
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We also provide a heat map to help to have a view in the bivariate variation of the Alpha & 

Gamma sensitivity. (Reported as score over time and step value for params are 10% Epsilon = 

0.1 & Episodes =10k) 

Conclusion Learning/Gamma rate effect: Clearly strength of learning rate is readable, even 

in computation time. Ideally the hyper parameter α must be time decreasing as the agent 

continues to gain a larger and larger knowledge base. 

 

Source. Own elaboration 

 

 

Figure 7: Alpha & Gamma sensitivity and Alpha & Epsilon sensitivity 

for Epsilon = 0.1 and 10k episodes 

 

Greedy Binary probability effect: Most of the score sensitivity is carried by the choice of the 

binary probability ϵ, we then decided to custom a bit this parameter in aim to give a first 

impulse of exploratory mindset to fill the Q-table and then decided to strongly decay this 

parameter in aim to allow exploitation policy phase. 
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Source. Own elaboration 

 

 

 

 

 

 

 

Figure 8: Q-Learning Agent Performance with Epsilon effect for α = 0.3, γ = 0.9 

 

Here we report the score of our adaptive strategy: 

 

Source. Own elaboration 

Figure 9: Q-Learning with score overtime = 7.5, exploration probability = 0.005, decay rate= 0.1 

 

We are now ready to approach the Deep-Q-Network Algorithm as we became more familiar with 

the Q-Learning Algorithm. 

 

Deep q-network algorithms 

As we previously mentioned, the major issue with Q-Learning is, once the number of states in 

the environment are very high, it becomes not efficient to implement them with Q table as the 
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size would become very, very large. State of the art techniques uses Deep neural networks 

instead of the Q-table (we call this technology combination as Deep Reinforcement Learning). 

The neural network framework takes in state information’s and actions to the input layer and 

learns to output the right action over the time. 

Deep learning techniques (like Convolution Neural Networks) are also used to interpret the 

pixels on the screen and extract information out of the game (like scores), and then letting the 

agent control the game. We will then at this stage fluently use the DQN notation for Deep Q 

Network, we will also emphasis in this section about 7 different complementary improvements for 

the DQN algorithm and we will try to understand how to combine them genuinely using the 

Rainbow repartition. 

To reach our target, we will try to be more familiar with the Neural Networks notions and the 

DQN, in aim to be more pertinent in our way to aboard the strength and limitation of all our 

Rainbows colors. 

Neural Networks basics and Deep Neural Networks. The Neural Networks democratization 

has been impulse by a combination of several factors: Big Data emergence, GPU extensive use 

and some very flexible model that could allow to divert the curse of high dimensionality. 

A neural network in his simplest form could be seen as a nonlinear application with respect to 

his parameter set  that associate to an entry x an output . 

We can deal with multidimensional problem and the functional  has a particular form. Then 

we can understand that a neural network could be a regression or a classifier, the set of 

parameters θ would be estimated from a learning sample. The cost function is not convex 

leading to local optimums, back propagation of the gradient would allow us to retrieve local 

minimizer without any greedy computational cost. 

The perceptron or Single Artificial Neuron. Let focus on the concept of a single perceptron 

or artificial neuron, in term of architecture, a neural network is considered as a partition of 

several artificial neuron  in term of functionality, we consider all the basic element 

wise: 
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▪ Given inputs are represented by the d−dimensional vector . One can figure 

out that this vector can be seen as the set of d neural termination linked to the neuron : 

▪ Intensity of excitatory or inhibitory signal transmission is represented by the weighted 

vector of connexion strength directed to the j-th artificial neuron, let denote the weight 

connexion family by . 

▪ A bias neuron associated . 

▪ An activation function φ that could be into this kind of function family (Opening Ions gate 

function):  

o Identity function . 

o Sigmoid or so-called Logistic function:   (homogeneous to a probability repartition 

function). 

o The hyperbolic tangent function: . 

o The hard threshold function or Binary signal activation . 

o The Rectified Linear Unit (ReLU) activation function, or positive part function: 

.  

▪ Output the functional   that would be the exit effective transmitted signal. 

                                                                                                 (6) 

For multilayer network, ReLU is favored as its gradient is not null for small value of x 

contrary of the sigmoid. The ReLU function also has a sparsification effect. The ReLU 

function and its derivative are null for negative values, and no information can be obtained in 

this case for such values, then a small add-on would allow to give values to negative values 

 with  positive and small enough. 

Neural Network or Multilayer perceptron. A Neural Network is a structure composed of 

several hidden layers of neurons where the output of a given neuron of a layer becomes at its turn 

the input of a neuron of the next layer. 

We are speaking about Recurrent Neural Network when the output of a neuron can also be the 

input of a neuron of the same layer or of neuron of previous layers. On the last layer called output 
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layer, one may also apply a different activation function as for the hidden layers depending on 

the type of problems we have at hand: regression or classification threat. 

The architectural parameters of the network are: The Cardinal of hidden layers L; the Cardinal 

of neurons into a layer and let describe all the links and the functionals engaged in a such 

network, as mentioned upper let consider different functional for the interlayer activation and the 

output one. 

 

Overview of the Network 

- Initialization and input configuration, let set . 

- Hidden Layers: For  and an activation function interlayer  

 

                             (7) 

                                  (8) 

 

• Output Layer: For k = L + 1 and an output activation function  

 

                             (9) 

                        (10) 

We are now able to speak about Deep Neural Network, as the qualitative Deep just reminds us 

that the amount of hidden layers could be important. Once the architecture of the network has 

been chosen, our objective is to estimate the parameter set . As usual, the 

estimation is obtained by minimizing a loss function with a gradient descent algorithm. We 

first must choose the loss function: let select the opposite of log likelihood and use an adapted 

Stochastic Gradient Descent within Back propagation Algorithm for the penalized problem. 

Let understand how we can combine the Q-learning algorithm within the Deep Neural Network 

technology, the association of these two concepts give birth to the AI. 

Introduction to Deep Q-Network. In this section as we previously presented the Deep Neural 

Network, we will see how we could map this precious technology to the Q functions. 
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In high dimensional Q-matrix framework, the optimal Q-function given from the Q-table 

could not be retrieved, to divert such issue, one could approximate or learn it from the different 

interactions within the environment as classical Q-learning algorithm. 

The “Deep” function is a way that would allow to approximate the Q-function using extensive 

deep neural networks which are universal approximation. Deep Q-Networks is the common 

name for Deep neural networks that approximate the Q-values. In short, our goal now is to 

approximate the optimal Q-function noted ,using the well know Bellman equation and 

supervised learning method to approximate . 

Our Neural Network input are the state and the action, the output is the Q-value related to this 

pair, this naive but heuristic vision has a limitation, we need to call the Q function as many 

times as there are actions. So, one would decide only to take the state as input and output the 

Q-values for all the possible actions. 

Deep Q-learning is a form of the classic Q-learning model. At every step, the state is evaluated 

and will give a Q-value which approximate the reward of each possible action. Machine 

learning is applied to makes a supervised model with input state and output action. In this case, a 

deep neural net is used as a machine learning model, hence the name Deep Q-learning. 

To have a better understanding the selection of the Deep Q-learning, let introduce the notion of 

Tabular Q-learning that deals non efficiently with all frameworks: 

In tabular Q learning, when the number of elements in the state or action space is enormous 

or the state or action space is continuous, we often express the Q function as a parametric 

function  using the parameters  and then update the parameters according to the 

gradient method. 

                                                            (11) 

The Target Value is obtained by the Bellman equation: 

                                                                (12) 
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The Method is homogeneous of a Bootstraping one where the Q function approximate is 

regressed toward the target value, which depends on itself. 

His main drawback is: The target value changes automatically when the learning network is 

updated. Therefore, when a non-linear function, such as a neural network is used for 

approximation, this learning process becomes unstable due to dynamical changes in the target, 

and in the worst case, the Q function diverges (Sutton and Barto, 1998). 

This instability has several causes one well knows is the correlations present in the 

sequence of observations, the fact that small updates to Q may significantly change the policy 

and therefore change the data distribution, and the correlations between the action-values Q and 

the target values . We will emphasis within this issue solved by 

the Experience Replay Memory Concept in the next sections. 

DQN architecture efficiency and filling Network procedure. The Deep Q-Network 

architecture could manage with drawback easily, to prevent Q-function from any kind of 

divergence, DQN introduces the target network that will be a duplication of the Q-function that 

is used to calculate the Q-target Value. 

DQN use the following kind of rule: 

                               .                           (13) 

The trick is that the Target Value from DQN is obtained exploiting the target network: 

                         .                           (14) 

 is the target network, one may recognize a Time Differential error computation 

as learning procedure, one can then remark in term of homogeneity that: 

                           (15) 

Let explain the nature of each quantity: 

•   is the maximum possible Q-value 

for the next state. 

•  is the current predicted Q-value. 
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•  is the Gradient of our current predicted Q-value. 

•  is the TD error. 

Naturally, we want to know how to upgrade such a network. 

• Periodic update where the target network is synchronized with the current Q function at 

every C learning step when the following condition is satisfied: 

                           (16) 

where Totalsteps represents the total number of updates applied to the Q function up to  the 

present time. This method is based on Neural Fitted Q Iteration (Riedmiller, 2005),  which 

is a batch Q learning method that employs a neural network. 

• The symmetric update, in which the target network is updated symmetrically as the learning 

network, and this is introduced in double Q-Learning (van Hasselt, 2010; van Hasselt et al., 

2016). 

In addition, one can remark that two processes occur during this algorithm, we distinguished 

them during just upper. 

We must now proceed to update with the completed with the repetition of experiences and 

then calibration of the learning procedure through a gradient descent for a given function Loss. 

Using replay memory buffer is not free from all kinds of risk, one need to divert a severe 

drawback that is induced by the correlation between samples, the random selection would help 

to reduce these phenomena. 

DQN utilizes the Experience Replay concept that would avoid the Agent to forget the 

previous experiences as there is strong correlation between actions and environment, to 

illustrate it at each time one receives a tuple  we then need to reduce 

correlation between experiences. Specifically, when the agent selects an action an at a state  

and receives a reward  and the state then transits to , this data point  is stored 

in replay memory D and used for mini-batch learning. 

In mini-batch learning, the parameters are updated based on a certain number of data points 

randomly selected from the replay memory D, and this procedure is repeated several times. 
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This makes it possible to prevent stagnation of learning because of correlation between data 

points while maintaining the one-step Markov property. Now incorporating the Experience 

replay in our TD error computation will lead to the passage to the conditional expectation with 

respect of uniform pick of the experienced sample tuple  from the replay buffer D. 

   .    (17) 

The Learning procedure at each step in then given by the Loss representation: 

.  (18) 

Here we reported the Mean Square Error for the Loss, one can choose the cross entropy or 

Mean Absolute Error:  represent the set of parameters for each iteration, whereas  are 

the one used to compute the target at this iteration, we remind that the target network is only 

updated at every periodic step C and are held fixed between individual updates. 

Stability of the DQN: The learning process of DQN is more stable than that of Q-Learning 

because the update rule of DQN introduces a delay between the time when  is 

updated and the time when TNet(s, a) is updated. Although the use of the target network is 

critical for stable learning, it hinders fast learning due to this delay. 

DQN hyper-parameters: The Batch size B; The Target Network Frequency K; the probability 

of exploration function ; the neural network ; SGD optimizer hyper parameters 

ADAM. 

 

Dqn algorithm 

We report here the pseudo code for the Vanilla DQN: 

• Hyper Parameters setting procedure (iterative posterior calibration would allow to understand their sensitive 

as we have done previously on Q-learning section). 

• Initialization: 

o Arbitrary setting of the weights  

o Initialize  

• On each interaction step: 
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o Select an action  randomly within the exploration probability , else . 

o Observe the experience tuple . 

o Add the observed experience into the experience replay buffer. 

o Sample batch of size  from the experience replay. 

o For each Transition  from the batch compute the Target Functional: 

 

                                (19) 

 

o Compute the Loss: 

 

                    (20) 

 

o Make a step of Stochastic gradient descent using the Gradient . 

o If . 

Convolution Networks: Here is the road map to understand the mechanism of the 

Convolutional Network: Let consider an image as input, then we rescale it in term of important 

features using preprocessing procedure and we stack the preprocessed frame in stack of frames. 

State Frame  Preprocessed Frame  Preprocessed stack of Frames 

Preprocessing: Let consider that our Deep Q network takes a stack of several frames as an 

input, each frame would be a collection of images encoded by a pixel. Preprocessing is a major 

computational advantage as it allows to reduce the complexity of the states set. This can be 

done by keeping just the relevant element that composes the image, as an illustration colors, 

RGB could be removed, considering a gray scale when color does not add important 

information, this is an important saving as we reduced our RBG channel to one where the 

preprocessing could be done within color environment; could be size reduction and preprocessing 

could be not important features removing. 

Stacked Frames through Convolution Layers: The frames would be processed by a certain 

number of convolution layers. These layers would allow to detect and exploit any spatial 

relationships between images, using the stack structure, one may also be able to exploit spatial 
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properties across those frames. Each convolutional layer will fire the ELU as of activation 

function, this kind of choice of function has made its proof for Convolution layers. 

As illustration for the Pacman environment, we report the architecture of a DQN to learn the 

function  within Pacman images as input. 

This architecture uses: 

• As input an image coming from our Pacman environment. 

• The equivalent preprocessed image that represents in synthetic way all the necessary 

information issued from the initial image. 

• 3 Convolutional Neuron Network Layers (CNN) that allows to exploit the local 

connectivity of the image. 

• One flattening layer a fully connected Layer. 

• Output the Q value for all the actions issued from our environment. 

Application of DQN in Taxi-V3. Let come back on our Taxi-V3 environment, the target 

would be to compare the Q-learning method vs the DQN one for this game. We completed the 

Embedding Layers within 4 Dense Layers within the last one that must have the same size of 

the action set.  Console exit for the Deep Neural Network show us: 

and the Fitting Output shows an ETA status bar within the metrics and the time elapsed.  

 

Source. Own elaboration 

 

Figure 10:  Console exits for DNN 
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Source. Own elaboration 

 

 

Figure 11:  Intervals exits for training of 1000000 steps 

 

Remark: One can remark that we don’t have a very negative reward at the beginning of the 

training session as we get previously into the Q-learning application. Scores are comparable 

within long time episodes. 

Q-Learning: The training process from Q-learning begin with a massive negative reward score 

since the algorithm knows just a few elements of the environment, the Q-table are clearly not 

optimized at this stage and has a clear need to be filled in through several trials. 
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DQN: clearly does not need a period of rapid average reward growth during its training 

session, while the algorithm also received a negative reward score at the very first stage of its 

training phase, it does not require many episodes to improve its reward scores. 

We report here the Test phase Moving Averaged Reward for the DQN over 50k episodes. 

 

Source. Own elaboration 

Figure 12:  The Test phase Moving Averaged Reward for the DQN over 50k episodes 

 

Source. Own elaboration 
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Figure 13:  The Test phase Moving Averaged Reward for the DQN over 100k episodes 

 

Q-learning and DQN tends to have the same potential in test phase with close Maximum 

rewards reached. 

Test gaming based on the trained agent: 

 

Source. Own elaboration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Results of test gaming based on the trained agent 

 

Distributional RL. The common reinforcement learning algorithms tend to use the average of 

the Q value as target, that is bit arbitrary in some sense, the Q values are not dense around the 

mean in general. Q values diversity could be tracked with the learning procedure of the whole 

distribution. 
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The concept of Distributional RL is to learn a distribution of Q-values different that the 

average one. The Approximation of this learned distribution noted  is define on discrete 

support grid . 

                                                (21

 

with a probability mass  on each atom  of the grid such that the approximation of 

the distribution could be represented within this scalar product projection: 

                                                                             (22)
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At this stage the calibration procedure is to find the set of parameters  that would closely 

match the actual distribution return. 

Learning procedure of the distribution: The distributional variant of the Q learning could be 

seen as follow updating of the Bellman equation within the distribution  instead of the 

average: 

                                                                            (23) 

 

Leading to target distribution: 

                                                                          (24) 

 

where  is the greedy action with respect to the average 

action value is state . 

Loss for calibration procedure is expressed then is term of Kullback-Leibler divergence: 

                                                                      (25) 

where  is the projection of the target distribution onto the grid support . 

Global Learning procedure for the network: As for vanilla DQN we can use the frozen 

parameter copy  to construct the distribution, then the parametrized distribution can be 

expressed as a neural network with enriched output dimension associated to each action value 

associated to each corresponding atoms value, so output exit is . Soft max is 

then exercised for each action dimension to insure that the output action distribution is well 

normalized. 

Hyper parameters: The grid builder one; the support parameters  and the 

optimizer routine one. 

 

Rainbow agent 

In the previous section we presented all the current known improvement of the Vanilla DQN 

algorithm, most of this improvement has been done in the TD error enhancement. Each 
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improvement method of the DQN described upper is a color of our rainbow, one may then try 

to combine all these previous improvement to one Algorithm. 

The result is that the Combination beats all the previous methods by a comfortable advance. 

Rainbow agent is then the combination of these 7 technologies: DQN; Double DQN; PER 

Dueling Network; Noisy Network; Distributional RL and the multi-step Q-Learning. 

This combination method demonstrates an impressive performance on Atari 2600 benchmark. 

 

Source. Hessel et al. (2018) 

 

 

 

 

 

 

 

 

 

 

Figure 15: Median human-normalized performance 

 

We will present the efficiency of the Rainbow agent within sonic environment game. 

In videos games, Rainbow agent is a revolution, some contest in retro game environment has 

emerged to highlight the performance of the Rainbow agent. Sonic is the most known and 

Rainbow agent is clearly not beaten and we emphasize that, however, as rainbow agent is a 

combination, integration would not be so simple because there is no independence of each 

component and we need to understand first what the rainbow recipes is and then using the 

Ablation method, rank by importance the component of our combination that integrated the 

Rainbow agent. 
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Here is how it can be put into operation Rainbow: 

• First take the Distributional RL enhancement and compose it within the Multi-step 

Learning leading to this Loss representation with the KL divergence: 

 

                                                                        (26) 

 

                                                                (27)



   
 
   
  

 

  

2761 

Alex Eduardo Pozo Valdiviezo  

Pol. Con. (Edición núm. 70) Vol. 7, No 7, Julio 2022, pp. 2732-2770, ISSN: 2550 - 682X 

• We obtain a Multi-step distributional Loss, we then use the Double Q-Learning. 

• We take our new object and we map it into the PER, by changing the TD error within the 

KL divergence obtained in 2, this gives us a KL loss with priority: 

 

                                                          (28) 

 

Using a KL divergence is a dissimilarity measure for two distributions provide us a way 

for weighting in Prioritized Replay in term of relevant loss of information. 

We do have our plate, what about our own to cook it? in other term how to deal this  the 

architecture? 

• For the network architecture: Use the Dueling Network within the SoftMax Layer and 

change the Linear Network by the Noisy one. 

• Then enjoy your Rainbow integrated Agent. 

Rainbow DQN scalping: The cooking is not straightforward, we will try to be more 

explicative particularly for the Prioritized Replay as this is the most important component, 

even in practice this technology would be our leverage. 

Rainbow is core based on an application of experience replay in distributional setting: The 

measure of experience importance must be genuinely provided; the major idea is inherited 

from the Vanilla DQN where the priority is just loss this experience: 

 

                                                                           (29) 

 

To combine noisy networks with double DQN heuristic, it is proposed to re sample noise on 

each forward pass through its copy for target computation. This decision implies that action 

selection, action evaluation and network utilization are independent and stochastic steps. 
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Combination with the Distributional RL and the dueling DQN: The main idea is to model 

the advantage  within a distributional setting. The Rainbow network has two heads: 

The value stream  and the advantage stream . 

These streams are integrated in respect of the equation (2.29) & (2.30) in the Dueling network 

architecture (Wang, Z. 2015) with a particularity softmax is applied across atoms dimension to 

guarantee that the output would be a categorical distribution. 

 

                                                (30) 
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Rainbow Algorithm: We present here in pseudo code the way to build our special Agent. 

• Hyper parameters setting 

• Initialization: 

1. Initialize the weight  of the neural net arbitrary 

2. Initialize   

3. Precompute the support grid 

                                              (31) 

1. On each interaction step: 

1 Select the action a within this criterion (Double DQN within noisy Network): 

 

                                   (32) 

 

                                   (33) 

 

2 Observe the experience tuple   and construct the  -step transition T: (Multi-step n -learning). 

 

                                   (34) 

 

Add it to the experience replay with priority using this criterion: (Distribution RL & PER). 

                                   (35) 

                                                    (36) 

3 Sample batch of size B from the experience replay buffer using the probability 

 

                                           (37) 

 

4 Compute weights for the batch and for each transition  from the batch compute the 

target: 

                                   (66) 

       (38) 
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5 Project  on the support  and update the transition priorities: 

 

                                           (39) 

6 Compute the Loss:  

                                            (40) 

7 if step  mod , . 

 

Results and performance evaluation of the Rainbow agent 

Playground: The evaluation area for all the agents would be the Atari 2600 games from the 

arcade learning environment. 

Score Metric: The average score of the agents is evaluated during the training phase each 1M 

steps, episodes are truncated at 108K frames equivalent of 30minutes of simulated play. Agent 

score is rescaled per games in respect of human expert performance, meaning 100% is a human 

expert and 0% would be a pure random agent, we will call this score per game as Normalized 

score. 

Normalized score can be aggregated across the game set, we then use the median human 

normalized performance across all the game. But this is not enough are this is not a real relevant 

measure as some agent could clearly outperform the human benchmark across some games. Then 

we decide to consider the median human tracker at particular environment steps rather as metric 

split in two regimes: no ops start regime and human starts regime. 

Baselines: Vanilla DQN is the benchmark, we report the results for the Rainbow integrated vs All 

its margins. 

Source. Hessel et al. (2018) 
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Figure 16: Median human-normalized performance 

 

Source. Hessel et al. (2018) 

 

 

 

 

 

 

 

 

 

 

Figure 17: Each plot shows, for several agents, the number of games where they have achieved at least a given 

fraction of human performance, as a function of time 

 

Learning Curve for all games 

 

Source. Hessel etal.(2018) 
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Figure 18: Learning curves for Rainbow and its ablations, for each individual games 

 

Results: Rainbow beats all other methods used on their own, both in learning speed and 

maximum skill level. It performs far better than the classic DQN approach. Even all kind of 

ablated still outperform the DQN benchmark. 

Ablation results: As Rainbow agent is real “Michelin recipe”, one may need to understand what 

would be the weight of each ingredient, do to so , we make a ablation of each ingredient and we 

test the plate flavor. 

Source. Hessel et al. (2018) 

 

Figure 19: Median human-normalized performance across 57 Atari games, as function of time 

 

Removing the priority replay, multi-step learning or distributional RL significantly worsens 

the performance: Clearly priority replay this is our main ingredient to provide an outperforming 

score. 

Removing noise nets also harms the performance, although a bit less and removing double Q-

learning or dueling networks seems to have no significant effect. 
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Rainbow Hyper-parameters calibration 

 

Figura 20: Rainbow hyper-parameters 

 

2. The Batch size B. 

3. The Target Network Update Frequency K. 

4. The multi-step n. 

5. Degree of prioritized experience replay  (Could be seen as persistence of an experience 

sample). 

6. Importance sampling bias correction for the prioritized replay .  

7. The neural network, the SGD optimizer parameters ADAM. 

8. The support grid parameters .  

The hyper parameters calibration procedure is carrying all the pattern of each component in term 

of efficiency, ablation could give an idea of some in term of importance weighting. Naive method 

resulting from a pure combination of all the rainbow would be rubbish in term of sensitivity 

understanding, we then decide to perform just a sample of them for tuning procedure. 

Iterative coordinate manual sensitivity discovering is done on the sampled set of hyperparameters: 

1. For Vanilla DQN, 200k of frames size is empirical enough to reduce the correlation in the 

updates, combining with prioritized replay we can relax then the batch size to 80k. 

2. Exploration policy calibration is driven by our noisy nets hyperparameters, we use the initial 

σ0 = 0.5. If one chooses not to use the noisy net (for ablation test as example) the greedy policy 
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will be selected within a time decay  function that would vanish at 0.01 in the first 250k 

frames. 

3. Adam optimizer parameter use  value: ;  

where  is the default DQN ADAM default parameters, for rainbow  is picked. 

4. For replay prioritization, the priority parameter is set to ω = 0.5 and then linear increase of 

the sampling parameter β is tested on the range [0.4, 1] on the training phase. ω is robust in term 

of efficiency, this is a pretty good news. 

5. Multi-step parameter is the most sensitive one, best performer is selected at n = 3. 

6. Hyper parameters are robust when set across all the games, so Rainbow is a genuine single 

agent. 

 

Recent proof of concept: Sonic and rainbow agent baseline for OPENAI contest 

As a real proof of concept during the Last two years, many contest has emerged, based on ranking 

the most important score in sonic level Rooms. Most of the participant used the Rainbow agent 

and tuned the hyperparameters to be present in the top ranks: PER hyper parameters are leveraging 

inputs and the Target Network Update Frequency K set at 8k instead of the 32K tends to help also. 

From experience, the prioritization is the most important component, then to improve the agent 

performance, one may need to focus on it hyperparameters setting and thing about how to use the 

rainbow as a new baseline by combining other technology to this new baseline. 

In OpenAI contest rainbow is provided to the participant as baseline as well PPO (Proximal 

Policy Optimization). 

Participants experience in Sonic: Generally speaking, the fact that it is off-policy makes it more 

sample efficient (theoretically speaking) than on-policy algorithms such as PPO. Hence, it is more 

suited to tackle problems with less training examples. On the flip side, as with other DQN 

methods, Rainbow comes with many hyperparameters so it is notoriously hard to tune and not as 

stable as PPO. 

A PPO fan Participant testify: “After the contest ended, I realized that a score of 6000 can be 

achieved simply by tuning 2 hyperparameters of the baseline Rainbow model, with no 

pretraining involved. (As benchmark, human score is close to 7000) 
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The lesson to take is that for the sake of the competition always try to go for the low hanging 

fruits first. It’s not that hyperparameters tuning is easy but it is certainly more straightforward as 

compared to implementing more complex methods. And I am quite surprised that a well-tuned 

Rainbow can achieve such a high score. I did try to tune PPO hyperparameters (e.g., minibatch 

size, number of epochs, entropy constant, reward scaling factor, etc.) but could not find a better 

combination than the default ones. 
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