
  
 

 
http://polodelconocimiento.com/ojs/index.php/es 

Pol. Con. (Edición núm. 70) Vol. 7, No 7 

Julio 2022, pp. 1713-1734 

ISSN: 2550 - 682X 

DOI: 10.23857/pc.v7i7 

 

 

        

 

 

Calibración de concentración de la señal de pet-scan a través de un modelo 

sokoloff 3k 

 

Calibrating of concentration of the signal from pet-scan through a 3k sokoloff 

model 

 

Calibração da concentração do sinal do pet-scan através de um modelo 3k 

sokoloff 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Correspondencia: eduardo.pozo@espoch.edu.ec 
 

 

 

 

Ciencias Técnicas y Aplicadas     

Artículo de Investigación  

   

* Recibido: 23 de mayo de 2022 *Aceptado: 12 de junio de 2022 * Publicado: 24 de julio de 2022 

 

I. Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba, 

Ecuador. 

Alex Eduardo Pozo Valdiviezo I 

eduardo.pozo@espoch.edu.ec 

 https://orcid.org/0000-0003-0480-5669     

https://orcid.org/0000-0002-2723-9850




 
 
 

 

1714 
Pol. Con. (Edición núm. 70) Vol. 7, No 7, Julio 2022, pp. 1713-1734, ISSN: 2550 - 682X 

Calibrating of concentration of the signal from pet-scan through a 3k sokoloff model 

Resumen 

Este documento describe el uso de métodos de mínimos cuadrados no lineales y de Lagrangian 

aumentado para ilustrar su uso en la calibración de los parámetros del modelo Sokoloff 3K para 

encontrar la concentración óptima de la señal de un PET-Scan a lo largo del tiempo. Así como la 

descripción de métodos numéricos para EDOs como el método explícito de Euler, RK2 y RK4 para 

aproximar las soluciones del sistema a partir del modelo 3K Sokoloff y las soluciones del problema 

adjunto asociado al método Lagrangiano aumentado. 

Palabras Clave: 3K Sokoloff Model; Problema de mínimos cuadrados no lineal; Método 

lagrangiano aumentado. 

 

Abstract 

This document describes the use of nonlinear least squares and augmented Lagrangian methods to 

illustrate their use in calibrating the parameters of the Sokoloff 3K model to find the optimal 

concentration of the signal from a PET-Scan over time. As well as the description of numerical 

methods for EDOs such as the explicit Euler method, RK2 and RK4 to approximate the solutions 

of the system from the 3K Sokoloff model and the solutions of the adjoint problem associated with 

the augmented Lagrangian method. 

Keywords: 3K Sokoloff Model; Nonlinear least squares problem; Augmented Lagrangian Method. 

 

Resumo  

Este documento descreve o uso de métodos de mínimos quadrados não lineares e métodos 

Lagrangianos aumentados para ilustrar seu uso na calibração dos parâmetros do modelo Sokoloff 

3K para encontrar a concentração ideal do sinal de um PET-Scan ao longo do tempo. Assim como 

a descrição de métodos numéricos para EDOs como o método de Euler explícito, RK2 e RK4 para 

aproximar as soluções do sistema a partir do modelo 3K de Sokoloff e as soluções do problema 

adjunto associado ao método Lagrangiano aumentado. 

Palavras-chave: Modelo 3K Sokoloff; Problema não linear dos mínimos quadrados; Método 

Lagrangiano Aumentado. 

 

Introducción 
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This project aims to estimate through a 3K Sokoloff model using methods such as nonlinear least 

squares and augmented Lagrangian to complete this project. The system describing the PETs is 

described by the Sokoloff model. 

The processing of the data has several subdivisions, such as reading the data, splitting the data set 

to compare the Euler, RK2 and RK4 schemes and testing to obtain the concentration of the signal 

from the PET-Scan. 

The concentration of the signal coming from the PET-Scan depends on the plasma concentrations, 

free concentrations and bound concentrations mentioned in Sokoloff’s 3K model. We tried to solve 

this problem using the methods mentioned above, which allows us to fit the curve obtained from 

the Sokoloff model with the data. 

 

ABOUT THE DATASET– 

  The dataset is composed of two files, a file with a sample of the 𝐶𝑝𝑒𝑡(𝑡) values for all the voxels 

affected by the tumor, the different measurement instants 𝑡1, 𝑡2, … , 𝑡𝑁𝑡−1=𝑡𝑓
, as well as a list of 

some complete 3D images (the whole thorax) i.e. for example for the instant 𝑡𝑛 the table 

(𝐶𝑝𝑒𝑡(𝑡𝑛))𝑖,𝑗,𝑘; ∀𝑖, 𝑗, 𝑘, and a list of the instants corresponding to the full 3D images. While the 

other file contains the values of 𝐶𝑝𝑙𝑎𝑠𝑚𝑎(𝑡), identical for all vectors and the different measurement 

instants 𝑡0, 𝑡1, … , 𝑡𝑁𝑡−1 = 𝑡𝑓 .. 

 

APPLICATION TO THE 3K SOKOLOFF MODEL– 

 Once a patient has done this examination, it is possible to do a pharmacokinetic analysis that aims 

to study the propagation of the tracer after its injection: how it was absorbed, how it was distributed 

in the body, how it was metabolized and finally how it was eliminated. 

From the measurements obtained after a PET-scan, i.e. the 𝐶𝑝𝑒𝑡 signal obtained in each voxel, and 

the knowledge of the arterial plasma concentration of the unmetabolized tracer, named “input 

function” and noted 𝐶𝑝𝑙𝑎𝑠𝑚𝑎 (considered as homegene within the feeder vessel), it is possible to 

model the functioning of the metabolism using a compartmental model. 

Figure  1: Vriens, D., Visser, E. P., de Geus-Oei, L. F., & Oyen, W. J. (2010). Methodological considerations in 

quantification of oncological FDG PET studies. European journal of nuclear medicine and molecular imaging, 37(7), 

1408–1425. 
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  Let consider the following two-compartments model proposed by Sokoloff in 1978(1 with 𝑘4 =

0):  

 {

𝐶𝑓𝑟𝑒𝑒′(𝑡) = 𝑘1𝐶𝑝𝑙𝑎𝑠𝑚𝑎(𝑡) − (𝑘2 + 𝑘3)𝐶𝑓𝑟𝑒𝑒(𝑡)

𝐶𝑏𝑜𝑢𝑛𝑑′(𝑡) = 𝑘3𝐶𝑓𝑟𝑒𝑒(𝑡)

 (1) 

 

 Our aim is to have a fair description of the concentration of the signal coming from the PET-Scan  

 𝐶𝑝𝑒𝑡(𝑡) = (1 − 𝑉𝑏)(𝐶𝑓𝑟𝑒𝑒(𝑡) + 𝐶𝑏𝑜𝑢𝑛𝑑(𝑡)) + 𝑉𝑏𝐶𝑝𝑙𝑎𝑠𝑚𝑎(𝑡). (2) 

 

 where 𝐶𝑓𝑟𝑒𝑒(𝑡) represents the concentration of “free” tracer 𝐶𝑏𝑜𝑢𝑛𝑑(𝑡) is the concentration of 

“bound” tracer, 𝑉𝑏 is the blood volume fraction, 𝑘1 and 𝑘2 are the transmembrane passage rates 

(for each direction), and 𝑘3 is the cytoplasmic phosphorylation rate. 

To deal with this equation, one may first for the differential system proposed in equations (1), the 

target of work must be driven through several natural achievements:   

    •  Numerical Solver of the differential system using Euler Explicit, Runge-Kutta order 2 and 

Runge-Kutta order 4.  

    • Quantify the numerical error for each chosen numerical solver.  

    • Appreciate the parameter sensitivity in term of affluence on the solution.  

    •  Calibrate the model using a descent Gradient Algorithm without any constraint on the 

admissible solution domain.  

    • Calibrate the model using continuous Lagrangian, to incorporate some constraints on our 

optimization problem  

  

 

 

 

 

METHODS USED– 

 NUMERICAL SOLVER–  

 For this particular system,analytic solution searching could be rubbish , thus we discretized the 

time variable into multiples of some small basic time increment Δ𝑡; whence time now takes the 
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discrete values 0, Δ𝑡, 2Δ𝑡, … , 𝑛Δ𝑡. We replace the derivative by a finite difference which 

approximates the derivative for small Δ𝑡. 

There are several ways to carry this out:  

 Backwardfinite − difference:
𝑑𝑦(𝑡)

𝑑𝑡
≈

𝑦(𝑡)−𝑦(𝑡−Δ𝑡)

Δ𝑡)
 (3) 

 Centeredfinite − difference:
𝑑𝑦(𝑡)

𝑑𝑡
≈

𝑦(𝑡+Δ𝑡)−𝑦(𝑡−Δ𝑡)

2Δ𝑡)
 (4) 

 Forwardfinite − difference:
𝑑𝑦(𝑡)

𝑑𝑡
≈

𝑦(𝑡+Δ𝑡)−𝑦(𝑡)

Δ𝑡)
 (5) 

 The error made in these approximations goes to 0 as Δ𝑡 → 0: It goes faster however to 0 in the 

central difference approximation than in forward or backward difference. We can see this doing a 

Taylor expansion:  

 

 𝑦(𝑡 + Δ𝑡) = 𝑦(𝑡) + 𝑦′(𝑡)Δ𝑡 + 𝑦′′(𝑡)
Δ𝑡

2!
+ 𝑦′′′(𝑡)

(Δ𝑡)3

3!
+ ⋯ (6) 

 

 It follows that if we denote the error by 𝜀 so that:  

 

 𝜀 = DifferenceApproximation −
𝑑𝑦(𝑡)

𝑑𝑡
 (7) 

 

 then for the forward and backward error, 𝜀 = 𝒪(Δ𝑡) but 𝜀 = 𝒪((Δ𝑡)2) for the centered one, we 

say that the forward and backward differences are first order accurate approximation. 

We can use the difference approximation to obtain a numerical scheme for solving the ODE. 

Suppose first we wish to solve our system in forward time positive with an initial condition 𝑦(0) =

𝑦0 given. If we use the forward difference to approximate the derivative, then we obtain the explicit 

Euler Scheme:  

 

 𝑦(𝑡 + Δ𝑡) = 𝑦(𝑡) + Δ𝑡𝑓(𝑡, 𝑦(𝑡)). (8) 

 

 Setting 𝑦𝑛 ∼ 𝑦(𝑛Δ𝑡) then yields the recurrence relation:  

 

 𝑦𝑛+1 = 𝑦𝑛 + Δ𝑡𝑓(𝑛Δ𝑡, 𝑦𝑛),    𝑛 = 0,1, … , 𝑁. (9) 
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 The numerical algorithm is explicit in the sense that once we have computed 𝑦𝑛 then 𝑦𝑛+1 is easily 

computed using the previous relationship. 

We runned our solver for a specific non optimal set of parameter and we plotted the numerical 

solution vs the empirical mean observation. 

 

 

 

 

 

 

 

   

 

 

Figure  2: Average 𝐶𝑝𝑒𝑡 over time and the results obtained with the three methods 

  

 

CONVERGENCE OF THE THE SCHEME AND ACCURACY ERROR– 

 Shape of our solution highlight our lack of fitting the curve for our chosen set of parameters , we 

will calibrate the model in a second phasis, but before doing so we will try for find the best 

numerical solution that reduce the error 𝜀 independently of the choice of our parameters. 

To deal with that, we created a reference solution with the smallest time slice step, in aim to be 

closer to the continuous solution. 

We retrieve for all possible time the reference solution coming from the smallest grid using a 

natural linear interpolation in aim to scale into this function bigger time steps. 

We also provided a grid generator,grid batch function that allows to retrieve a bunch of grid for 

different format of time steps Δ𝑡. 

Naive observation but for the reference grid i.e 214+1 nodes, we have a perfect match of our all 

numerical method:  

 



  
 
   

 

1719 
Pol. Con. (Edición núm. 70) Vol. 7, No 7, Julio 2022, pp. 1713-1734, ISSN: 2550 - 682X 

Alex Eduardo Pozo Valdiviezo 

 

Figure  3: Results obtained with the three schemes 

 As illustration, we here for the biggest time grid the numerical solution compared to the reference 

one.  

   

 

 

 

 

 

 

 

 

 

Figure  4: Results obtained with the three schemes using a reference solution 

  

Numerical error is clearly adapted , we will try to illustrate for all the numerical scheme the order 

of the numerical error operated within grid choice. 

To perform such a procedure, we take a grid batch and a numerical scheme in the input and return 

the tuple (log(Δ𝑡), log𝐸) where 𝐸 is the most important local error for given a choice of grid. 
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Figure  5: Curves ln(𝐸) vs. ln(Δ𝑡) for each of the schemes 

  

Our selection would be done in favor of Runge-Kutta 2 as there no improvement of Runge-Kutta 

4 (Numerical error is the same than RK2 and complexity costs are more important) as we could 

expect theoretically, in aim to find the order of each method, we computed the slope using a linear 

regression. 

We obtained the following results:   

    • Euler Method Slope = 1 , the method is first order accurate as Taylor expansion could testify  

    • RK2 Method Slope = 2, the method is second order accurate as Taylor expansion could testify.  

    • RK4 Method Slope = 2 , the method is second order accurate and Taylor expansion would 

give us order 4.  

  

 

 

Parameters identification and sensitivities 

 As our choice in term of numerical error control has been done in favor of RK2, we will now 

aboard the calibration problematic but as first guess we will try to have a intuition on our parameter 

set sensitivity. 

To deal with that let choose a couple of parameter and make a naive range variation of them and 

compute the solution for these precise choices and compare them to the empirical mean. 
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This manual method is done in respect within the unit figure variation for each parameter. 

For 𝑘1 we pass the interval [0,0.002] with step of 0.002 and we appreciate the marginal sensitivity. 

 

 

Figure  6: Variations of 𝑘1 by setting the other parameters 

  

We do the same procedure for 𝑘2 we pass the interval [0,0.01] with step of 0.001. 

 

Figure  7: Variations of 𝑘2 by setting the other parameters 

  

We do the same procedure for 𝑘3 we pass the interval [0,0.001] with step of 0.001. 
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Figure  8: Variations of 𝑘3 by setting the other parameters 

  

We do the same procedure for 𝑉𝑏 we pass the interval [0,0.1] with step of 0.01. 

 

 

Figure  9: Variations of 𝑉𝑏 by setting the other parameters 

  

This clearly give an idea of the functionality of each parameters, the 𝑉𝑏 one is clearly a driven to 

reproduce the initial spike , the other parameter lead to some parallel shift of the exponential shape 

post spike. 
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Clearly if we would have a chance to reproduce any initial spike, the optimization procedure must 

leverage particularly on this 𝑉𝑏.  

 

NON LINEAR LEAST SQUARE PROBLEM SOLVING 

 Let consider the Energy function of the free parameters vector 𝑢 = [𝑘1, 𝑘2, 𝑘3, 𝑉𝑏] the optimization 

problem is to find (if it exist the solution of this problem):  

 {

𝐽(𝑢) =
1

2
∫

𝑡𝑓

𝑡0
|𝐶𝑝𝑒𝑡 𝑢(𝑡) − 𝐶𝑝𝑒𝑡(𝑡)|2𝑑𝑡

𝑢∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑢∈ℝ4𝐽(𝑢).

 (10) 

 

 In our case the 𝐶𝑝𝑒𝑡 function is obtained thanks to the numerical resolution of an ODE on the set 

of points 𝑡0, 𝑡1, … , 𝑡𝑁𝑡−1, so we want to minimize:  

 

 𝐽(𝑢) =
Δ𝑡

2
∑𝑁𝑡−1

𝑖=0 (𝐶𝑝𝑒𝑡 𝑢(𝑡𝑖) − 𝐶𝑝𝑒𝑡(𝑡𝑖))2 (11) 

 

Clearly the function 𝐽 is convex, continuous, coercive so inf-compact on a finite dimension space, 

so there exist a solution 𝑢∗ to this problem. 

We will them use a Gauss-Newton algorithm to find a such root. 

To do so, we compute the integral using a Euler scheme, and then the problem is mapped to the 

following optimization problem:  

 

 𝑢∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑢ℝ4
Δ𝑡

2
∥ 𝐹(𝑢) ∥2

2 (12) 

 

 Where the function 𝐹: ℝ4 ⟶ ℝ𝑁𝑡   

 

 𝐹(𝑢) = (𝐶𝑝𝑒𝑡,𝑢(𝑡0) − 𝐶𝑝𝑒𝑡(𝑡0), … , 𝐶𝑝𝑒𝑡,𝑢(𝑡𝑁−1) − 𝐶𝑝𝑒𝑡(𝑡𝑁−1)). (13) 

  

We compute the gradient using the Gauss-Newton method that is based on the residual norm 

reduction. Let build the iterative matrix and vectors:  
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 𝐴𝑘 = (∇𝐹(𝑢𝑘))𝑇∇𝐹(𝑢𝑘), (14) 

 𝑏𝑘 = −(∇𝐹(𝑢𝑘))𝑇𝐹(𝑢𝑘), (15) 

 𝑟𝑒𝑠𝑘 = 𝐴𝑘
−1𝑏𝑘 = 𝑢𝑘+1 − 𝑢𝑘. (16) 

 

 These relation are obtained from the Normal equation, the iterative matrix suite 𝐴𝑘 is non singular 

symmetric positive. We decide to limit our self to 10 iterations as we converge quiet quickly. We 

obtained 𝑢∗ = [0.00257289, 0.00690342, 0.00191878, 0.10377291] This set of parameter 

tends to be a good first fit of the signal concentration. 

 

   

 

AUGMENTED LAGRANGIAN AND ADJOINT PROBLEM– 

  In this section , we want to add some constraint to solve our optimization problem, we then decide 

to introduce some penalization in aim to add constraint in our root finding. 

We can solve this problem using the penalized minimization Lagrange problem: 

 

 {
𝐽(𝑢) = ∫

𝑡𝑓

𝑡0
|𝐶𝑝𝑒𝑡 𝑢 − 𝐶𝑝𝑒𝑡|2𝑤(𝑡)𝑑𝑡 +

𝜆

2
|𝑢 − 𝑢𝑎𝑝|2.

inf
𝑢

𝐽(𝑢).
 (17) 

 where 𝑤(𝑡) is a function that allows us to modulate the weight we give to each value drawn from 

the 𝐶𝑝𝑒𝑡 data: If we consider that all the values have the same importance we can just take 𝑤(𝑡) =

1. The The second term in 𝐽(𝑢) is interesting when we have an idea of the values of the parameters 

to optimize. It allows us to stay close to these values. 

In order to be able to minimize 𝐽(𝑢) we introduce the Lagrangian:  

 

 𝐿(𝑦, 𝑢, 𝑝) = ∫
𝑡𝑓

𝑡0
|𝐶𝑝𝑒𝑡 𝑢 − 𝐶𝑝𝑒𝑡|2𝑤(𝑡)𝑑𝑡 +

𝜆

2
|𝑢 − 𝑢𝑎𝑝|2 + ∫

𝑡𝑓

𝑡0
𝑝(𝑡)𝑇(𝑦′(𝑡) −

𝑓(𝑦(𝑡), 𝑢))𝑑𝑡. (18) 

  

Where  

 𝑦(𝑡) = (𝐶𝑓𝑟𝑒𝑒(𝑡), 𝐶𝑏𝑜𝑢𝑛𝑑(𝑡) 
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and 

 

 𝐶(𝑦(𝑡), 𝑢) = 𝐶𝑝𝑒𝑡 𝑢(𝑡) = (1 − 𝑉𝑏)(𝐶𝑓𝑟𝑒𝑒(𝑡) − 𝐶𝑏𝑜𝑢𝑛𝑑(𝑡)) + 𝑉𝑏𝐶𝑝𝑙𝑎𝑠𝑚𝑎(𝑡). 

 

Thus  

 𝐽(𝑢) = 𝐿(𝑦𝑢, 𝑢, 𝑝) 

 

for all 𝑝 and 𝑦𝑢 solution of the ODE system solved with parameters 𝑢. 

Our optimization problem is in fact an optimal control problem with 𝑢 named control variable, to 

solve the Lagrange problem, we will use a gradient method. 

The idea is build by recurrence a suite 𝑢𝑘 ∈ 𝑈𝑎𝑑 that would approach 𝑢∗ 

Here is the routine to follow :   

    •  Given 𝑢0, we will choose as first guess the vector used in Part 3.  

    •  We build by recurrence 𝑢𝑘+1 = 𝑢𝑘 − 𝜌∇𝐽(𝑢𝑘).  

    •  We provide a convergence test of the residual and a stop if the if the maximum number of 

iterations is reached (we did not compute it as the also tends to converge quickly).  

 For our problem: 

 

Step 1: Choosing 𝑢0 and 𝑢𝑎𝑝 we do have some idea as we discovered previously that the most 

sensitive variable is 𝑉𝑏 as this variable allows to reproduce the initial signal spike. We choose 𝑢𝑎𝑝 

equal to our previous finding in Gauss-Newton and we choose a penalty parameter 𝜆 that would 

allow to shift not so strongly on the 𝑉𝑏 direction. 

In our case the functional is  

 

 𝑔(𝑦, 𝑢, 𝑡) =
1

2
|𝐶𝑝𝑒𝑡,𝑢(𝑡) − 𝐶𝑝𝑒𝑡(𝑡)|2𝑤(𝑡). 

 

Step 2: Solving the Cauchy problem i.e find a numerical solution of this iterative ODE system:  

 

 {
𝑦′𝑘 = 𝑓(𝑡, 𝑦𝑘, 𝑢𝑘)
𝑦𝑘(0) = 𝑦0.

 (19) 
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 This problem does have a unique solution as the function 𝑓 is Lipschitz. Then, solve numerically 

the adjoint ODE using a backward retrograde ODE Euler scheme:  

 

 {
−𝑝′𝑘 = 𝐷𝑦(𝑓(𝑦(𝑡), 𝑢))∗𝑝(𝑡) − 𝑤(𝑡)(𝐶(𝑦(𝑡), 𝑢) − 𝐶𝑝𝑒𝑡(𝑡))𝐷𝑦(𝐶(𝑦(𝑡), 𝑢))

𝑝(𝑇) = 0
 (20) 

 

 Let 𝑝 be the solution of the adjoint problem then, let 𝑢 ∈ ℝ4, the gradient is:  

 

 𝐷𝑢𝐽(𝑢) = 𝐷𝑢𝐿(𝑦, 𝑢, 𝑝) = ∫
𝑇

0
𝑤(𝑡)(𝐶(𝑦(𝑡), 𝑢) − 𝐶𝑝𝑒𝑡) ⋅ 𝐷𝑢𝐶(𝑦(𝑡), 𝑢) 𝑑𝑢𝑑𝑡 + 𝜆(𝑢 −

𝑢𝑎𝑝) ⋅ 𝑑𝑢 − ∫
𝑇

0
𝐷𝑢(𝑓(𝑦(𝑡), 𝑢))∗𝑝(𝑡) ⋅ 𝑑𝑢𝑑𝑡. 

 

 Therefore,  

 

 𝐷𝑢𝐽(𝑢) = ∫
𝑇

0
(𝑤(𝑡)(𝐶(𝑦(𝑡), 𝑢) − 𝐶𝑝𝑒𝑡(𝑡)))𝐷𝑢𝐶(𝑦(𝑡), 𝑢)∗ − 𝐷𝑢(𝑓(𝑦(𝑡), 𝑢))∗𝑝(𝑡)) 

  

 ∇𝑦𝑓(𝑡, 𝑦𝑘, 𝑢𝑘) = [
−(𝑘2 + 𝑘3) 0
𝑘3 0.

] (21) 

 

 and  

 

 ∇𝑦𝑔(𝑡, 𝑦𝑘, 𝑢𝑘) = [
1 − 𝑉𝑏

1 − 𝑉𝑏
]

𝑇

(𝐶𝑝𝑒𝑡,𝑢(𝑡) − 𝐶𝑝𝑒𝑡(𝑡))𝑤(𝑡). (22) 

  

Leading to the following result for the derivative of the Hamiltonian:  

 

 [

−(𝑘2 + 𝑘3)𝑝𝑘
(1)

+ 𝑘3𝑝𝑘
(2)

− (𝐶𝑝𝑒𝑡,𝑢 − 𝐶𝑝𝑒𝑡)𝑤(1 − 𝑉𝑏)

−(𝐶𝑝𝑒𝑡,𝑢 − 𝐶𝑝𝑒𝑡(𝑡))𝑤(𝑡)(1 − 𝑉𝑏)

]

𝑇

 (23) 
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 To solve numerically the ODE proposed by the adjoint we use the Backward Euler scheme:  

 

 {
𝑝𝑁 = 𝑝(𝑇)

𝑝𝑖−1 = 𝑝𝑖 − Δ𝑡 ℎ(𝑝𝑖, 𝑖Δ𝑡),    𝑖 = 𝑁, 𝑁 − 1, … ,1.
 (24) 

 

 Leading to the following equation for the differential inserting 𝑝 solution of our adjoint retrograde 

ODE  

 

 𝐷𝑢𝐽(𝑢) ⋅ 𝛿𝑢 = 𝜆(𝑢 − 𝑢𝑎𝑝) ⋅ 𝛿𝑢 + ∫
𝑡𝑓

𝑡0
[(𝐶𝑝𝑒𝑡,𝑢 − 𝐶𝑝𝑒𝑡) 𝑤 𝐷𝑢𝐶 − 𝑝 𝐷𝑢𝑓] ⋅ 𝛿𝑢 𝑑𝑡 (25) 

 with  

 𝐷𝑢𝐶 = [0, 0, 0, −(𝐶𝑓𝑟𝑒𝑒 + 𝐶𝑏𝑜𝑢𝑛𝑑) + 𝐶𝑝𝑙𝑎𝑠𝑚𝑎] (26) 

 and  

 𝐷𝑢𝑓 = [
𝐶𝑝𝑙𝑎𝑠𝑚𝑎 −𝐶𝑓𝑟𝑒𝑒 −𝐶𝑓𝑟𝑒𝑒 0

0 0 −𝐶𝑓𝑟𝑒𝑒 0
]. (27) 

 

 So to resume up our Step 2:   

    •  Solve our Cauchy problem for 𝑦𝑘.  

    •  Solve our Cauchy problem for 𝑝𝑘.  

    •  Let set 𝐷𝑢𝐽(𝑢𝑘).  

 

 Step 3: Test if 𝐷𝑢𝐽(𝑢𝑘) = 0 if so we stop with succeed and 𝑢𝑘 is the solution that we are looking 

for. If this is not the case we continue looping using the relationship:  

 

 𝑢𝑘+1 = 𝑢𝑘 − 𝜌𝐷𝑢𝐽(𝑢𝑘). (28) 

 

 Step 4: When the residual is small enough, we stop with succeed else we set 𝑘 = 𝑘 + 1 and we 

go back to the Step 2. After this process we have the following outputs:   

    •  The suite 𝑢𝑘.  

    •  The suite of gradient 𝐷𝑢𝐽(𝑢𝑘).  

    •  The residual norm suite ∥ 𝑟𝑒𝑠𝑘 ∥.  
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    •  The suite of energy 𝐽(𝑢𝑘).  

 At this stage let’s talk a bit on the weight function chosen and the penalty parameter 𝜆. 

We remind that we want to reproduce the initial spike so we need to have some control on the last 

parameter of our 𝑢 vector. We also want the Energy function 𝐽 to be convex, so we chosen a 

particular function that tends to offset as much as possible our gradient 𝐷𝑢𝐽. 

So we want that ∫
𝑡𝑓

𝑡0
(𝐶𝑝𝑒𝑡,𝑢𝑢(𝑡) − 𝐶𝑝𝑒𝑡(𝑡)) 𝑤(𝑡) (1 − 𝑉𝑏) 𝑑𝑡 must be under control within the 

initial spike divergence. 

We then set a kind of Gauss-Hermite weight function 𝑤(𝑡) = exp(−𝑡2), we remind that the energy 

is associated to a weighted least square problem, the parameter estimation is strongly dependent of 

the weight choice. The weight function is useful to control the local error and particularly adapted 

within our spike issue. Power decay are also good candidates. 

 

 

Figure  10: Curves ∥ 𝑟𝑒𝑠𝑘 ∥ vs. iteration numbers for three different penalties 

  

The convergence is quiet fast, around 10 iterations are enough but the price to pay is that the total 

energy is quiet high, so we reached a local minimum for the energy function quickly but this is not 

a absolute minimum. 
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Figure  11: Curves Energy vs. iteration numbers for three different penalties 

  

We are now facing a problem as we reach fast a local minimum for strong value of penalty but our 

energy function is quiet high, this fact is simply coming from our assumption of taking a fixed 

value of 𝜌 = 10−3. 

 

 

Figure  12: 𝐶𝑝𝑒𝑡 mean adjusted using the augmented Lagrangian method for three different penalties 

 

Instead of using the Cauchy rule to optimize the gradient step parameter, we could decide to change 

our target vector 𝑢𝑎𝑝 in aim to reproduce the spike, we remark that there was a trade off between 
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choosing the gradient step and the control of penalty. We decided to set 𝑢𝑎𝑝 with optimum 

parameter for all component except for the last one that is the initial spike driver. 

As we have chosen weight function that was quiet flatting all the first parameter, the direction of 

our gradient is carried by the last component, this is why we decided to put strong penalty to have 

the possibility to explore not far from our 𝑉𝑏 parameter intuition. 

Choosing 𝑢𝑎𝑝 = [0.00257289, 0.00690342, 0.00191878, 0.02] leads to a particular good fit 

within less than 10 iterations. 

 

 

Figure  13: 𝐶𝑝𝑒𝑡 calibrated using the augmented Lagrangian method 

  

Energy is still high due to the high value of the penalty trade off. 

This solution obtained seems to be in line with our 2D energy plot: 

         

                             [ Sensitivity of 𝑘1 and 𝑉𝑏]             [Sensitivity of 𝑘3 and 𝑉𝑏]    
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Vertical axis is the Energy variation for 𝑉𝑏 and horizontal axis is for 𝑘1 then 𝑘2, 𝑘3, these maps 

report us that minimal energy is expected close to 5 units for 𝑉𝑏 ( 1 unit = 0.01), and quiet 

independently from the other parameters. Our 𝑢𝑎𝑝 choice has been done in respect of these 

observations as we do have a idea where we need to look for in term of 𝑉𝑏 area. 

We can conclude that the leading parameter is the 𝑉𝑏 as this is the spike driver and calibration could 

be quiet independently from the others. Penalized problem leads us to a trade off convexity vs 

sparcity. 

 

Discussions 

 As already stated before, we applied Non Linear Square Problem and the Augmented Lagrangian 

method from which we got several values that can be used in the analysis and prediction, them 

being the transmembrane passage rates 𝑘1, 𝑘2, the cytoplasmic phosphorylation rate 𝑘3 and the 

blood volume fraction 𝑉𝑏. These values are different for Non Linear Least Square and Augmented 

Lagrangian Method and are given in the table below:  

 

Table  1: Non Linear Least Square VS Augmented Lagrangian 

(𝑘1, 𝑘2, 𝑘3𝐴𝑁𝐷 𝑉𝑏) 

 𝑘1 𝑘2 𝑘3 𝑉𝑏 

Non Linear Least 

Square 

0.00257289 0.00690342 0.00191878 0.10377291 

Augmented 

Lagrangian 

0.00257289 0.00690342 0.00191878 0.02 

 

Conclusions 

 Nonlinear least squares and augmented Lagrangian techniques were used. After having applied 

both least squares and augmented Lagrangian, we observed that augmented Lagrangian performed 

better than the nonlinear least squares technique in terms of prediction efficiency and accuracy.  

 

A significant analysis was performed with the help of the penalty control error and the residual 

norm. In this project, we tried to show the best method for the prediction of free tracer 

concentration.  
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Another thing we observed is that the blood volume fraction 𝑉𝑏 is very sensitive to changes. The 

accuracy we have obtained is creditable if we take into account that the augmented Lagrangian 

method allows the sensitivity of the parameters to be controlled by weight functions. It should also 

be noted that all the variables in the data set are closely related to the 𝐶𝑝𝑒𝑡 variable. 
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