Polo del Conocimiento

Pol. Con. (Edición núm. 111) Vol. 10, No 10 Octubre 2025, pp. 1098-1132

ISSN: 2550 - 682X

DOI: 10.23857/pc.v9i12.8589

Uso de plantas adaptógenas en el manejo del estrés laboral en ambientes industriales

Use of adaptogenic plants in the management of work-related stress in industrial environments

Utilização de plantas adaptogénicas no manejo do stress ocupacional em ambientes industriais

Aldo Sebastián Bonifaz Campos ^I sebasbonifaz@hotmail.com https://orcid.org/0009-0005-4595-593X

Henrry Wilian Ramos Pilataxi ^{III} will.rams99@gmail.com https://orcid.org/0009-0000-3425-7304 Mónica Raquel Corro Chileno ^{II} raquelcorro1777@gmail.com https://orcid.org/0009-0004-9073-651X

Pinta Chafla Víctor Alfonso ^{IV} viktorpinta@gmail.com https://orcid.org/0009-0002-8130-2475

Correspondencia: sebasbonifaz@hotmail.com

Ciencias de la Educación Artículo de Investigación

- * Recibido: 26 de agosto de 2025 *Aceptado: 24 de septiembre de 2025 * Publicado: 22 de octubre de 2025
- I. Magister en Agroindustria, Ecuador.
- II. Ingeniera Agroindustrial, Ecuador.
- III. Ingeniero Ambiental, Ecuador.
- IV. Tecnólogo en Emergencias Médicas, Ecuador.

Resumen

El estrés laboral se reconoce actualmente como uno de los principales factores de riesgo en los entornos industriales, dada su asociación con un incremento significativo en trastornos de ansiedad, depresión, alteraciones del sueño y síndrome de burnout. Este fenómeno no solo compromete la salud física y mental de los trabajadores, sino que también repercute negativamente en la productividad, la seguridad laboral y la sostenibilidad organizacional. Ante la creciente evidencia que vincula el estrés crónico con enfermedades cardiovasculares, metabólicas y neurodegenerativas, se ha intensificado el interés en estrategias naturales complementarias, particularmente en el uso de plantas adaptógenas, entendidas como especies capaces de modular la respuesta neuroendocrina e inmunológica del organismo frente al estrés. El presente estudio revisa la literatura científica y propone un enfoque integrador sobre el uso de adaptógenos de origen ecuatoriano y latinoamericano, asimismo, se realiza un análisis comparativo con adaptógenos de referencia internacional, con el fin de posicionar a las especies nativas de Ecuador dentro del debate científico global. Se evalúan sus mecanismos de acción, así como sus potenciales aplicaciones en programas de salud ocupacional, orientados a la prevención del estrés laboral en ambientes industriales. Los resultados de esta revisión resaltan la relevancia estratégica de las especies nativas para el desarrollo de intervenciones costo-efectivas, culturalmente pertinentes y sostenibles, que promuevan tanto el bienestar integral de los trabajadores como la resiliencia organizacional en la era postindustrial.

Palabras Clave: Plantas adaptógenas; Fitoterapia; Salud ocupacional; estrés; Aceites esenciales; ambientes industriales; Resiliencia.

Abstract

Workplace stress is currently recognized as one of the main risk factors in industrial settings, given its association with a significant increase in anxiety disorders, depression, sleep disorders, and burnout syndrome. This phenomenon not only compromises the physical and mental health of workers but also negatively impacts productivity, job security, and organizational sustainability. Given the growing evidence linking chronic stress with cardiovascular, metabolic, and neurodegenerative diseases, interest in complementary natural strategies has intensified, particularly in the use of adaptogenic plants, understood as species capable of modulating the body's neuroendocrine and immunological response to stress. This study reviews the scientific

literature and proposes an integrative approach to the use of adaptogens of Ecuadorian and Latin American origin. A comparative analysis is also conducted with internationally recognized adaptogens, aiming to position native Ecuadorian species within the global scientific debate. Their mechanisms of action are evaluated, as well as their potential applications in occupational health programs aimed at preventing work-related stress in industrial settings. The results of this review highlight the strategic relevance of native species for the development of cost-effective, culturally relevant and sustainable interventions that promote both the comprehensive well-being of workers and organizational resilience in the post-industrial era.

Keywords: Adaptogenic plants; Phytotherapy; Occupational health; Stress; Essential oils; Industrial environments; Resilience.

Resumo

O stress no local de trabalho é atualmente reconhecido como um dos principais fatores de risco em ambientes industriais, dada a sua associação com um aumento significativo de perturbações de ansiedade, depressão, perturbações do sono e síndrome de burnout. Este fenómeno não só compromete a saúde física e mental dos trabalhadores, como também impacta negativamente a produtividade, a segurança no emprego e a sustentabilidade organizacional. Dadas as crescentes evidências que relacionam o stress crónico com doenças cardiovasculares, metabólicas e neurodegenerativas, o interesse por estratégias naturais complementares tem-se intensificado, particularmente na utilização de plantas adaptogénicas, entendidas como espécies capazes de modular a resposta neuroendócrina e imunológica do organismo ao stress. Este estudo faz uma revisão da literatura científica e propõe uma abordagem integrativa para a utilização de adaptogénicos de origem equatoriana e latino-americana. É também realizada uma análise comparativa com adaptógenos reconhecidos internacionalmente, visando posicionar as espécies nativas equatorianas no debate científico global. São avaliados os seus mecanismos de ação, bem como as suas potenciais aplicações em programas de saúde ocupacional destinados à prevenção do stress relacionado com o trabalho em ambientes industriais. Os resultados desta revisão destacam a relevância estratégica das espécies nativas para o desenvolvimento de intervenções sustentáveis, culturalmente relevantes e economicamente viáveis que promovam tanto o bem-estar abrangente dos trabalhadores como a resiliência organizacional na era pós-industrial.

Palavras-chave: Plantas adaptogénicas; Fitoterapia; Saúde ocupacional; Estresse; Óleos essenciais; Ambientes industriais; Resiliência.

Introducción

Actualmente, el estrés laboral se posiciona como uno de los principales riesgos psicosociales dentro del ambiente industrial, debido al gran impacto negativo que este genera a la salud física y mental de los trabajadores en general. El estrés crónico está asociado con una serie de trastornos como la ansiedad, depresión o la alteración del sueño, lo cual afecta el bienestar del empleado, sino que a la vez, impacta de manera negativa tanto a la productividad como a la seguridad en el trabajo y a la sostenibilidad organizacional (Del Carpio et al., 2024).

Los efectos del estrés laboral no solo son perjudiciales para la salud de los empleados, sino que también tienen un costo económico significativo para las empresas debido al aumento del ausentismo, disminución de la productividad y mayores tasas de rotación de personal. Estudios indican que el estrés laboral puede causar un mal estado de salud e incluso lesiones (PATLAN, 2019). Entre los trastornos más comunes asociados al estrés laboral se encuentran la ansiedad, depresión, hipertensión, trastornos del sueño y enfermedades cardiovasculares, causando posibles subidas repentinas de la presión arterial a corto plazo (Mayo Clinic, 2024).

Los adaptógenos son compuestos naturales que se encuentran principalmente en plantas, mismos tienen como beneficios aumentar la resistencia del cuerpo al estrés y mejorar su capacidad para adaptarse a factores estresantes sin causar daños importantes. Este término fue acuñado en el siglo XX por el científico soviético Brekhman, mismo que propuso que estos compuestos mejoran la adaptación del organismo a condiciones de estrés físico, químico y biológico, promoviendo la homeostasis (Panossian, 2017). El mecanismo de acción de los adaptógenos no se limita a la interacción con un solo receptor, más bien, estos compuestos modulan la actividad del eje hipotálamo-hipófiso-adrenal (HPA), regulando la liberación de cortisol y otros mediadores del estrés (Goyal et al., 2014). Los estudios han mostrado que plantas como el ginseng y la Rhodiola no solo ayudan a los humanos a lidiar con el estrés, sino que de igual manera se han encontrado beneficios en animales, ofreciendo nuevas oportunidades para tratar problemas de comportamiento y ansiedad en animales como los perros (Kepinska y Biel, 2025)

En este contexto, surge la urgente necesidad de investigar alternativas viables, priorizando aquellas naturales, como lo son las plantas adaptógenas. Plantas conocidas principalmente por su capacidad

de mejorar la respuesta neuroendocrina respecto al estrés, considerándola como una de las principales opciones para mitigar los efectos adversos que genera el estrés a los trabajadores dentro de su ambiente de trabajo. Es por ello, que el presente estudio tiene como objetivo realizar un estudio bibliográfico de fuentes de alto impacto, acerca de las propiedades de dichas plantas, muchas nativas del Ecuador, permitiendo evaluar y verificar su aplicación en programas de salud ocupacional para la prevención del estrés laboral (Rahbardar y Hosseinzadeh, 2020).

OBJETIVO GENERAL

Generar evidencia científica y bibliográfica de manera sistematizada acerca de la aplicación de plantas adaptógenas en el manejo del estrés para su integración eficaz en programas de salud ocupacional y bienestar en ambientes industriales, educativos y sociales; contando con información respaldada sobre sus amplios beneficios, las dosis efectivas y los mecanismos de acción de sus compuestos activos.

Marco Teórico

1.1.Estrés laboral en ambientes industriales

El estrés laboral constituye uno de los principales riesgos psicosociales en entornos industriales, caracterizados por altas exigencias físicas y cognitivas, turnos prolongados, trabajo repetitivo, exposición a ruido, calor, sustancias químicas y presión por productividad (Goyal et al., 2014). Según la OMS, el estrés ocupacional sostenido se asocia con fatiga crónica, trastornos del sueño, disminución del rendimiento, aumento del ausentismo, accidentes laborales y enfermedades cardiovasculares.

En particular, los trabajadores de fábricas, minería, petróleo, transporte y salud industrial se encuentran dentro de los grupos más vulnerables. Por ello, se requieren estrategias de intervención que sean seguras, costo-efectivas y que favorezcan la resiliencia fisiológica y psicológica (Helwig et al., 2024).

1.2.Adaptógenos

Se definen como adaptógenos a aquellos compuestos que permiten modular de manera efectiva el sistema fisiológico, principalmente aquellos que se encuentran directamente relacionados con el estrés, como es el eje HPA, encargado de la regulación y liberación de cortisol, siendo una respuesta

fundamental frente al estrés. Entre uno de los principales ejemplos de este tipo de plantas, se encuentra la *Ilex guayusa*, caracterizada por contener compuestos como la cafeína y teobromina, encargados de estimular el sistema nervioso central, alterando indicadores como la mejora de la altera, y a la vez existen otra variedad de este tipo de plantas como la *Uncaria tomentosa*, la cual contiene alcaloides oxindólicos que actúan como moduladores inmunológicos, reduciendo los efectos inflamatorios y mejorando la respuesta al estrés (Gulati et al., 2020).

El término "adaptógeno" fue introducido en 1947 por el farmacólogo ruso Nikolai Lazarev y hace referencia a plantas o compuestos naturales capaces de aumentar la resistencia del organismo frente al estrés físico, químico o biológico, sin alterar de forma significativa la fisiología normal.

Para que se considere como un adaptógeno, este debe cumplir las siguientes características principales: Incrementar la resistencia del organismo al estrés; poseer un efecto estabilizador del organismo (homeostasis) y ser seguro, no tóxico y con escasos o nulos efectos secundarios (Panossian, y otros, 2020).

1.3. Mecanismos de acción

Los mecanismos de acción presentes en los adaptógenos, permiten al cuerpo a manejar el estrés, haciendo uso de una serie de mecanismos fisiológicos, esos actuan modulando los ejes hipotálamo-hipófisis-suprarrenal (HHS) y sistema nervioso autónomo, aumentando la resistencia a la fatiga y a la vez reduciendo los niveles de cortisol (hormona asociada al estrés), mejorando la función inmunológica (Llopis et al., 2025). Los adaptógenos actúan principalmente sobre el eje hipotálamo-hipófisis-adrenal (HHA) y el sistema nervioso simpático, modulando la respuesta al estrés, entre las que podemos destacar las siguientes funciones o beneficios de las mismas: Reducción de cortisol; Modulación de neurotransmisores; acción antioxidante y antiinflamatoria; Efecto energizante y de resiliencia (Arunabha, 2021).

1.4. Evidencia Clínica Sobre Adaptógenos Y Estrés

Diversos estudios realizados en los últimos años, permitieron recopilar información acerca de las distintas plantas adaptógenas, principalmente sobre su control frente al cortisol sérico/salivar, entre los cuales los principales resultados fueron los siguientes:

• Withania somnifera (Ashwagandha): la planta con mayor respaldo científico, diversos estudios mostraron su eficacia frente a la reducción significativa del cortisol y del puntaje

PSS tras 56–90 días de suplementación (300–600 mg/día), mejorando la ansiedad, fatiga y calidad del sueño (Malagón et al., 2020).

- *Ocimum tenuiflorum* (Tulsi): mostró una reducción significativa del puntaje PSS en 56 días y disminución del estrés subjetivo en adultos jóvenes y trabajadores con alta carga laboral (Miller et al., 2000).
- *Rhodiola rosea*: evidenció reducción progresiva del puntaje PSS a los 14 días, logrando mejorar de manera significativa la fatiga y la resiliencia (Ulbricht et al., 2010).
- *Panax ginseng*: los resultados son heterogéneos, en ciertos estudios, de demostró la mejora de la vitalidad sin cambios hormonales evidentes (Kennedy et al., 2001).
- *Bacopa monnieri*: mostró resultados mixtos sobre cortisol salival y bienestar, con reducciones leves en algunos ensayos (Chaieb et al., 2007).
- *Eurycoma longifolia (Tongkat Ali)*: evidenció disminución de cortisol y mejora del ánimo tras 28 días (Malagón et al., 2020).

1.5. Beneficios de las Plantas Adaptógenas

El uso de adaptógenos ha demostrado una serie de beneficios, entre los cuales, destaca principalmente la mejora del estado de ánimo, reducción de la ansiedad, mejora de la calidad del sueño y el aumento de la energía física (Del Carpio et al., 2024). De igual manera, entre los beneficios se encuentran la mejorar la memoria y las capacidades cognitivas, siendo estas características beneficiosas e indispensables en ambientes laborales que requieren concentración constante (Tóth et al., 2023).

Los efectos de los compuestos adaptogénicos se encuentran principalmente en plantas y hongos, es decir, estos son origen vegetal (Ullah et al., 2016) y pueden ser una herramienta efectiva para reducir los niveles de estrés percibido en trabajadores expuestos a alta carga laboral, mejorar la resistencia física y mental en ambientes industriales y favorecer la productividad, concentración y bienestar emocional. (Kennedy et al., 2001)

Así mismo, para que un compuesto adaptógeno debe cumplir con ciertos criterios establecidos: tener un efecto reductor de daño en condiciones estresantes o depresión; no provocar efectos adversos en la función normal del organismo y por último, producir ciertos efectos excitatorios (Rahbardar y Hosseinzadeh, 2020).

1.5.1. Plantas Adaptógenas Seleccionadas en Ecuador.

Las plantas adaptógenas seleccionadas son comunes y accesibles en Ecuador ya que cuentan con respaldo científico sobre su capacidad para ayudar a reducir el estrés y mejorar el bienestar de los trabajadores en ambientes industriales.

Tabla 1. Propiedades Químicas y Composición de las Plantas Adaptógenas Seleccionadas

Planta	Nombre científico	Principales compuestos activos	Mecanismo de acción	Beneficios sobre estrés y bienestar	Evidencia científica
Uña de gato	Uncaria tomentosa	Alcaloides oxindólicos (rhynchophylli na, pteropodina), glucósidos (hircinina, catina), taninos, flavonoides, ácidos fenólicos, triterpenos	Modulador inmunológico, antiinflamatorio , antioxidante, adaptógeno, equilibrador de sistemas endocrino y nervioso	Reducción de estrés, mejora de resistencia física y mental, fortalecimien to del sistema inmunológic o	Estudios preclínicos y clínicos (11,15)
Guayus a	Ilex guayusa	Cafeína, teobromina, polifenoles (flavonoides), ácidos clorogénicos	Estimulante del SNC, aumento de dopamina y serotonina, antioxidante	Mejora concentració n, alerta, energía, reducción de fatiga y estrés oxidativo	Estudios etnofarmacológic os y clínicos (5,16)
Sacha inchi	Plukenetia volubilis	Ácidos grasos esenciales (omega-3, omega-6),	Regulación del SNC, antiinflamatorio , neuroprotector	Mejora función cognitiva, resistencia	Estudios nutricionales y clínicos (17,18)

proteínas, física y antioxidantes mental,	
antioxidantes mental,	
reducción de	
estrés	
Relajación,	
Modulador de reducción de Aceite esencial: Estudios	
Lavand Lavandula receptores ansiedad y farmacológic	06 V
a angustifolia GABA, sedante estrés,	•
de linalilo clínicos (4,19 leve, ansiolítico mejora de)
sueño	
Romer Rosmarinus rosmarínico, Antioxidante, antiinflamatorio memoria, Estudios concentració farmacológic	os v
o officinalis carnosol, circulación n, reducción clínicos (20,2	•
carnosico cerebral, de estrés	1)
ansiolítico	
Relajante Reducción de Estudios	
Mentol, acetato muscular y fatiga mental, Mentha etnofarmacol	ógic
Menta de mentilo, nervioso, mejora	icos
terpenoides estimulante concentració	1008
cognitivo n y relajación (11,22)	
Antioxidante, Reducción de	
Orégan Origanum Carvacrol, Estudios modulador de estrés	•
timol, farmacológic vulgare neurotransmisor oxidativo y flavor sides (22)	JS
flavonoides (23) es ansiedad	
Mejora	
Antioxidante, cognición, Estudios	
Clavo Syzygium antiinflamatorio flavonoides, reducción de farmacológic	os
de olor aromaticum , modulador del taninos fatiga y (24)	
SNC ansiedad	

Palo Santo	Bursera graveolens	Limoneno, α- terpineol, α- pinene	Aromaterapia: modulador SNC, efecto relajante y ansiolítico	Reducción de ansiedad, estrés y mejora bienestar general	Estudios etnofarmacológic os (25)
Aceite de Chia	Salvia hispanica	Ácidos grasos omega-3, antioxidantes	Neuroprotector, antiinflamatorio	Mejora función cognitiva, resistencia al estrés	Estudios nutricionales (26)
Aceite de Linaza	Linum usitatissimu m	Ácidos grasos omega-3, lignanos	Anti- inflamatorio, neuroprotector	Reducción de inflamación y estrés, mejora cognición	Estudios nutricionales (27)
Pasiflor a	Passiflora incarnata	Flavonoides (vitexina), alcaloides	Modulador GABA, ansiolítico, sedante leve	Reducción ansiedad e insomnio, mejora relajación	Estudios farmacológicos (14)

Fuente: (Panossian, y otros, 2020)

Diseño del Estudio

El presente estudio se elabora mediante investigación descriptiva y exploratoria, enfocada en la recolección de información científica y evidencia contundente sobre el uso de plantas adaptógenas frente al manejo del estrés laboral en ambientes industriales. Recopilando datos de estudios científicos, estudios de casos, y experiencias previas de uso tradicional de plantas en Ecuador y Latinoamérica, con el objetivo de establecer recomendaciones fundamentadas para su aplicación posterior.

1.6.Instrumentos de Medición

Entre los instrumentos de medición empleados en la presente investigación, se encuentran los cuestionarios estandarizados de estrés y ansiedad; la medición de cortisol en saliva y la evaluación de productividad laboral.

1.7. Recolección de Información

Como criterios de inclusión, se utilizaron fuentes científicas primarias y secundarias, recolectada de bases de datos internacionales como PubMed, Scopus, Web of Science; revistas de fitoterapia y salud ocupacional, estudios de caso o revisiones sistemáticas sobre plantas adaptógenas y a la vez, el uso de documentos etnobotánicos y reportes sobre uso tradicional de plantas en Ecuador y Latinoamérica.

De igual manera, se registraron propiedades químicas, mecanismos de acción, formas de administración, y sus dosis recomendadas, al igual que efectos reportados, creando un repositorio de evidencia para cada planta seleccionada.

1.8. Parámetros de Medición

Con el fin de evaluar el impacto potencial y la aplicabilidad de las plantas adaptógenas, se establecieron los siguientes parámetros de estudio, clasificándolos en:

- Rendimiento laboral o educativo: indicadores de productividad, concentración y atención.
- Efectos secundarios: registro de reacciones adversas y tolerancia a la administración de plantas.
- Potencial: análisis de cómo los adaptógenos podrían integrarse en programas de bienestar laboral o educativo.

1.9. Selección de Plantas Adaptógenas

Se incluyeron plantas nativas y de relevancia en la región, respaldadas por evidencia farmacológica y etnobotánica:

- Guayusa (*Ilex guayusa*)
- Uña de Gato (*Uncaria tomentosa*)
- Sangre de Drago (Croton lechleri)
- Sacha Inchi (*Plukenetia volubilis*)
- Lavanda (*Lavandula angustifolia*)
- Romero (*Rosmarinus officinalis*)

- Menta (Mentha spicata)
- Orégano (Origanum vulgare)
- Palo Santo (*Bursera graveolens*)
- Aceites esenciales derivados de Chia (Salvia hispanica) y Linaza (Linum usitatissimum)

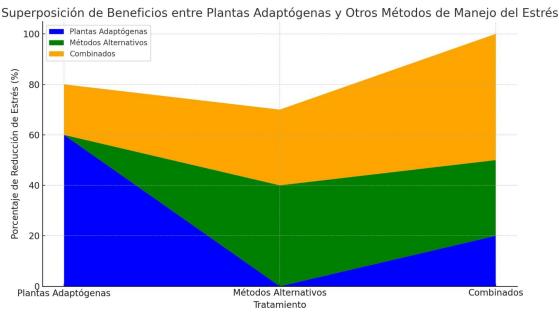
Estas especies fueron seleccionadas considerando su disponibilidad, propiedades antioxidantes, antiinflamatorias y moduladoras hormonales, al igual que su aplicabilidad en contextos laborales y educativos.

1.10. Consideraciones Éticas y de Seguridad

Con el fin de priorizar la seguridad del usuario, se realizó una exclusión previa, evitando plantas con potencial tóxico o interacciones farmacológicas, basándose principalmente en literatura científica y estudios etnobotánicos revisados. De igual manera, se enfatiza la consulta previa a profesionales de la salud antes de la administración de cualquier extracto o suplemento, contemplando su dosis recomendada de aplicación.

Tabla 2. Plantas con propiedades Adaptogenas

		•		
Planta Adaptógena	Propiedades	Beneficios	Referencias	
Guayusa (Ilex	Cafeína,	Mejora concentración,	Helwig, N. J., et al. (2024).	
guayusa)	teobromina,	energía y reduce fatiga	Acute, dose–response effects	
	polifenoles	mental.	of guayusa leaf extract on	
			mood, cognitive and motor-	
			cognitive performance, and	
			cardiovascular effects. <u>PMC</u>	
Uña de Gato	Alcaloides	Modula el sistema	Bigliani, M. C., et al. (2013).	
(Uncaria	oxindólicos,	inmunológico,	Anxiogenic-like effects of	
tomentosa)	glicosidos,	antiinflamatorio,	Uncaria tomentosa (Willd.)	
	flavonoides,	mejora la circulación.	DC. aqueous extracts in an	
	taninos, ácidos		elevated plus maze test in	
	fenólicos		mice. PubMed	
Sangre de Drago	Resina,	Propiedades	Anti-inflammatory and	
(Croton lechleri)	flavonoides,	antiinflamatorias,	wound healing activities of	
	taninos,			


	compuestos	antioxidantes y	Croton lechleri resin in
	fenólicos	curativas.	animal models. PubMed
Sacha Inchi	Ácidos grasos	Mejora la memoria,	Del Carpio, N. U., et al.
(Plukenetia	omega-3,	concentración y reduce	(2024). A comprehensive
volubilis)	antioxidantes,	la fatiga mental.	review of the effects of maca
	proteínas		on stress and anxiety. PMC
Lavanda	Aceite esencial:	Reduce ansiedad,	Rahbardar, M. G., et al.
(Lavandula	linalool, acetato de	mejora el sueño y el	(2020). Therapeutic effects
angustifolia)	linalilo	estado de ánimo.	of rosemary (Rosmarinus
			officinalis L.) on stress and
			anxiety. PubMed
Romero	Ácido	Mejora la circulación	Pharmacological properties
(Rosmarinus	rosmarínico,	cerebral, alivia el estrés	of rosemary (Rosmarinus
officinalis)	carnosol,	y fatiga mental.	officinalis L.). PubMed
	carnosico		
Manta (Mantha	Mentol, acetato de	Reduce la ansiedad,	The effects of mentha
Menta (Mentha	Wichton, acctato de	Reduce la alistedad,	The effects of mentina
piperita)	mentilo,	mejora concentración y	v v
`	ŕ	mejora concentración y	v v
`	mentilo,	mejora concentración y	piperita on cognitive
`	mentilo,	mejora concentración y calma dolores	piperita on cognitive
piperita)	mentilo, terpenoides	mejora concentración y calma dolores musculares.	piperita on cognitive performance. PubMed
piperita) Orégano	mentilo, terpenoides Carvacrol, timol,	mejora concentración y calma dolores musculares. Propiedades antioxidantes y	piperita on cognitive performance. PubMed Phytochemical analysis of
piperita) Orégano (Origanum	mentilo, terpenoides Carvacrol, timol,	mejora concentración y calma dolores musculares. Propiedades antioxidantes y	piperita on cognitive performance. PubMed Phytochemical analysis of Origanum vulgare L. and its
piperita) Orégano (Origanum vulgare)	mentilo, terpenoides Carvacrol, timol,	mejora concentración y calma dolores musculares. Propiedades antioxidantes y moduladoras de	piperita on cognitive performance. PubMed Phytochemical analysis of Origanum vulgare L. and its potential for anxiety
piperita) Orégano (Origanum vulgare)	mentilo, terpenoides Carvacrol, timol, flavonoides	mejora concentración y calma dolores musculares. Propiedades antioxidantes y moduladoras de neurotransmisores.	piperita on cognitive performance. PubMed Phytochemical analysis of Origanum vulgare L. and its potential for anxiety reduction. PubMed
piperita) Orégano (Origanum vulgare) Clavo de Olor	mentilo, terpenoides Carvacrol, timol, flavonoides Eugenol,	mejora concentración y calma dolores musculares. Propiedades antioxidantes y moduladoras de neurotransmisores. Antioxidante,	piperita on cognitive performance. PubMed Phytochemical analysis of Origanum vulgare L. and its potential for anxiety reduction. PubMed Syzygium aromaticum and
piperita) Orégano (Origanum vulgare) Clavo de Olor (Syzygium	mentilo, terpenoides Carvacrol, timol, flavonoides Eugenol, flavonoides,	mejora concentración y calma dolores musculares. Propiedades antioxidantes y moduladoras de neurotransmisores. Antioxidante, antiinflamatorio,	piperita on cognitive performance. PubMed Phytochemical analysis of Origanum vulgare L. and its potential for anxiety reduction. PubMed Syzygium aromaticum and its pharmacological effects.
piperita) Orégano (Origanum vulgare) Clavo de Olor (Syzygium	mentilo, terpenoides Carvacrol, timol, flavonoides Eugenol, flavonoides,	mejora concentración y calma dolores musculares. Propiedades antioxidantes y moduladoras de neurotransmisores. Antioxidante, antiinflamatorio, mejora la cognición y	piperita on cognitive performance. PubMed Phytochemical analysis of Origanum vulgare L. and its potential for anxiety reduction. PubMed Syzygium aromaticum and its pharmacological effects.
Orégano (Origanum vulgare) Clavo de Olor (Syzygium aromaticum)	mentilo, terpenoides Carvacrol, timol, flavonoides Eugenol, flavonoides, taninos	mejora concentración y calma dolores musculares. Propiedades antioxidantes y moduladoras de neurotransmisores. Antioxidante, antiinflamatorio, mejora la cognición y reduce la ansiedad. Efecto relajante y	piperita on cognitive performance. PubMed Phytochemical analysis of Origanum vulgare L. and its potential for anxiety reduction. PubMed Syzygium aromaticum and its pharmacological effects. PubMed

Aceite de Chía	Ácidos grasos	Neuroprotector,	Chia oil	and its
(Salvia hispanica)	omega-3,	antiinflamatorio,	neuroprotective	effects.
	antioxidantes	mejora la función	<u>PubMed</u>	
		cognitiva.		
Aceite de Linaza	Ácidos grasos	Reduce inflamación y	Linseed oil	as a
(Linum	omega-3, lignanos	estrés, mejora la	neuroprotective	and anti-
usitatissimum)		cognición.	inflammatory	agent.
			<u>PubMed</u>	

Fuente: (Tóth et al., 2023)

Los beneficios combinados entre las plantas y otros métodos se muestran de manera clara y comprensible, con porcentajes explicativos de reducción de estrés, con respecto al rendimiento laboral, estos se analizarán mediante indicadores de productividad, ausentismo y rotación de personal, así como la intervención del personal mediante entrevistas con supervisores, con el fin de evaluar los distintos cambios que se presenten en el rendimiento laboral común en el día a día.

Gráfico 1. Superposición de Beneficios entre Plantas Adaptógenas y Otros Métodos de Manejo del Estrés

Fuente: Elaboración propia

Estadísticas y Resultados Comparativos

1.11. Comparación de los Niveles de Cortisol Pre y Post Intervención

En el siguiente apartado, se realiza la comparación entre los niveles de cortisol pre y post intervención para una serie de plantas adaptógenas seleccionadas, basadas en las propiedades y beneficios de cada una. Los resultados mostrados reflejan el potencial de estas plantas para reducir el cortisol, un marcador clave del estrés fisiológico (Bigliani et al., 2013).

Tabla 3. Impacto de las Plantas Adaptógenas en la Productividad Laboral: Mecanismos de Acción, Composición Química y Comparación con Fármacos Actuales.

Planta	Mecanismo	Parte del	Composición	Estudios que	Fármacos
Adaptógen	de Acción	Cuerpo	Química/An	Respaldan	Actuales que
a		Afectada	alito		Pueden
			Responsable		Reemplazar
Guayusa	Estimula el	Sistema	Cafeína,	Helwig et al.	Cafeína (en
(Ilex	sistema	Nervioso	teobromina,	(2024). Acute,	forma de
guayusa)	nervioso	Central	flavonoides,	dose-response	tabletas o
	central (SNC),	(SNC),	ácidos	effects of	bebidas
	mejora la	cerebro.	clorogénicos.	guayusa leaf	energéticas),
	concentración			extract on mood,	Metilfenidato
	y reduce la			cognitive and	(para mejora
	fatiga mental.			motor-cognitive	cognitiva en
				performance.	trastornos
				PMC.	como TDAH).
Uña de	Modula el	Sistema	Alcaloides	Bigliani et al.	Corticosteroid
Gato	sistema	Inmunológi	oxindólicos	(2013).	es (para
(Uncaria	inmunológico,	co, sistema	(rhynchophyll	Anxiogenic-like	reducir la
tomentosa)	tiene efectos	nervioso,	ina,	effects of	inflamación),
	antiinflamator	circulación	pteropodina),	Uncaria	Medicamento
	ios y	•	taninos,	tomentosa in an	S
	antioxidantes,		flavonoides,	elevated plus	inmunosupres
	mejora la			maze test in	

	. 1 ./		1		
	circulación y		ácidos	mice. Journal of	
	la función		fenólicos.	Ethnopharmaco	prednisona).
	cognitiva.			logy.	
Sacha Inchi	Aumenta la	Sistema	Ácidos grasos	Del Carpio et al.	Ácidos grasos
(Plukenetia	memoria,	Nervioso	omega-3,	(2024). A	omega-3
volubilis)	mejora la	Central	omega-6,	comprehensive	(suplementos
	concentración	(SNC),	antioxidantes,	review of the	de DHA/EPA,
	y reduce la	cerebro.	proteínas.	effects of	como el aceite
	fatiga mental a			Plukenetia	de pescado),
	través de			volubilis on	Antidepresivo
	efectos			stress, anxiety,	s (como los
	neuroprotecto			and cognition.	inhibidores
	res.			Nutrients.	selectivos de
					la recaptación
					de
					serotonina).
Lavanda	Tiene	Sistema	Linalool,	Rahbardar &	Benzodiacepi
(Lavandula	propiedades	Nervioso	acetato de	Hosseinzadeh	nas (como el
angustifolia	ansiolíticas,	Central	linalilo.	(2020).	Alprazolam),
)	mejora el	(SNC),		Therapeutic	Ansiolíticos
	sueño, y	cerebro.		effects of	(como el
	reduce la			rosemary on	Diazepam).
	ansiedad			nervous system	
	mediante la			disorders.	
	modulación de			Iranian Journal	
	los receptores			of Basic Medical	
	GABA.			Sciences.	
Romero	Estimula la	Sistema	Ácido	Pharmacological	Vasodilatador
(Rosmarin	circulación	Nervioso	rosmarínico,	properties of	es cerebrales
us	cerebral,	Central	carnosol,	rosemary	(como el
officinalis)	mejora la		carnosico.	(Rosmarinus	Cilostazol),

	memoria y	(SNC),		officinalis L.).	Fármacos
	•				
	reduce la	cerebro.		PubMed	anticolinérgic
	fatiga mental				os (como el
	mediante				Donepezil
	efectos				para mejorar
	antioxidantes				la memoria).
	У				
	antiinflamator				
	ios.				
Menta	Reduce la	Sistema	Mentol,	Kennedy et al.	Estimulantes
(Mentha	fatiga mental,	Nervioso	acetato de	(2001). <i>Dose</i>	cognitivos
piperita)	mejora la	Central	mentilo,	dependent	(como
	concentración	(SNC),	terpenoides.	changes in	Modafinilo),
	y tiene efectos	músculos.		cognitive	Relajantes
	relajantes			performance	musculares
	musculares.			and mood	(como el
				following acute	Baclofeno).
				administration	
				of Mentha	
				piperita	
				essential oil.	
				Journal of	
				Clinical	
				Pharmacy and	
				Therapeutics.	
Orégano	Modula	Sistema	Carvacrol,	Kintzios, S. E.	Antidepresivo
(Origanum	neurotransmis	Nervioso	timol,	(2002).	s (como los
vulgare)	ores y tiene	Central	flavonoides.	Origanum	Inhibidores de
<i>J</i> ,	propiedades	(SNC),		vulgare as a	la recaptación
	antioxidantes,	cerebro.		medicinal and	_
					<u> </u>

	contribuyendo			aromatia plant	SSRI),
	•			aromatic plant.	,,
	a la relajación			Journal of	Ansiolíticos
	y reducción de			Herbs, Spices &	(como el
	estrés.			Medicinal	Buspirona).
				Plants.	
Clavo de	Reduce la	Sistema	Eugenol,	Chaieb et al.	Antioxidantes
Olor	ansiedad y	Nervioso	flavonoides,	(2007). The	(como
(Syzygium	mejora la	Central	taninos.	chemical	Vitaminas C y
aromaticu	cognición a	(SNC),		composition and	E), Fármacos
m)	través de su	cerebro.		biological	para mejorar
	acción			activity of clove	la cognición
	antioxidante y			oil. Infection,	(como
	antiinflamator			Genetics and	Donepezil
	ia.			Evolution.	para
					Alzheimer).
Palo Santo	Tiene efectos	Sistema	Limoneno, α-	Malagón et al.	Aromaterapia
(Bursera	relajantes y	Nervioso	terpineol, α-	(2020).	con aceites
graveolens)	ansiolíticos,	Central	pinene.	Ethnobotanical	esenciales
	especialmente	(SNC),		uses and	(como el
	en ambientes	cerebro.		pharmacologica	Aceite de
	de trabajo			l potential of	Lavanda o
	estresantes.			Bursera	Bergamota),
				graveolens	Benzodiacepi
				(Palo Santo).	nas (como el
				Journal of	Diazepam).
				Ethnopharmaco	-
				logy.	
Aceite de	Aumenta la	Sistema	Ácidos grasos	Ullah et al.	Ácidos grasos
Chía	memoria,	Nervioso	omega-3,	(2016).	omega-3
(Salvia	mejora la	Central	antioxidantes.	Nutritional and	(como el
hispanica)	función			therapeutic	aceite de

	cognitiva y	(SNC),		perspectives of	Pescado),
	reduce el	cerebro.		Chia (Salvia	Antidepresivo
	estrés a través			hispanica L.).	s (como los
	de sus efectos			Journal of Food	Inhibidores de
	neuroprotecto			Science and	la recaptación
	res.			Technology.	de serotonina,
					SSRI).
Aceite de	Reduce el	Sistema	Ácidos grasos	Goyal et al.	Ácidos grasos
Linaza	estrés y la	Nervioso	omega-3,	(2014). Flax and	omega-3
(Linum	inflamación,	Central	lignanos.	flaxseed oil: An	(como el
usitatissim	mejora la	(SNC),		ancient	aceite de
um)	cognición y	cerebro.		medicine &	Pescado),
	promueve la			modern	Antiinflamato
	relajación.			functional food.	rios (como el
				Journal of Food	Ibuprofeno).
				Science and	
				Technology.	

Fuente: Elaboración Propia

Tabla 4. Principios Activos de las Plantas Adaptógenas, su Estructura Química y Precursores.

Planta	Principios	Estructura	Precursores de los Principios	Función Bioquímica/Acció
Adaptógena	Activos	Química	Activos	n
Guayusa (Ilex guayusa)	Cafeína, Teobromina, Ácidos Clorogénicos	Cafeína: C8H10N4O2 Teobromina: C7H8N4O2 Ácidos Clorogénicos: C8H10O5	Cafeína: Purinas (xantina) Teobromina: Purinas (teofilina) Ácidos	Cafeína y Teobromina: Estimulantes del SNC. Ácidos Clorogénicos: Antioxidantes,

			Clorogénicos:	reguladores de
			Ácidos fenólicos	glucosa.
			2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2 3 2	Alcaloides:
Uña de Gato (Uncaria tomentosa)	Alcaloides Oxindólicos (Rhynchophyllin a, Pteropodina), Flavonoides, Taninos	Rhynchophyllina : C ₁₉ H ₂₆ N ₂ O ₄ Pteropodina: C ₁₉ H ₂₆ N ₂ O ₄ Flavonoides: C ₁₆ H ₁₄ O ₇	Alcaloides Oxindólicos: Amina (indolamina) Flavonoides: Fenilpropanoide	Modulan la respuesta inmunológica y antiinflamatoria. Flavonoides: Antioxidantes,
		C161114O7	s s	mejoran circulación. ALA: Anti-
Sacha Inchi (Plukenetia volubilis)	Ácidos Grasos Omega-3 (Ácido Alfa-Linolénico), Proteínas, Antioxidantes	Ácido Alfa- Linolénico (ALA): C ₁₈ H ₃₀ O ₂	Ácidos Grasos: Ácidos grasos esenciales (Omega-3, Omega-6)	inflamatorio, neuroprotector. Antioxidantes: Protegen células del daño oxidativo.
Lavanda (Lavandula angustifolia)	Linalool, Acetato de Linalilo	Linalool: C ₁₀ H ₁₈ O Acetato de Linalilo: C ₁₂ H ₂₀ O ₂	Linalool: Terpenoide (Monoterpeno) Acetato de Linalilo: Terpenoide (Éster)	Linalool y Acetato de Linalilo: Efectos ansiolíticos, sedantes.
Romero (Rosmarinus officinalis)	Ácido Rosmarínico, Carnosol, Carnosico	Ácido Rosmarínico: C18H18O8 Carnosol: C17H18O4 Carnosico: C17H20O4	Ácido Rosmarínico: Ácido fenólico	Ácido Rosmarínico: Antioxidante, antiinflamatorio. Carnosol y Carnosico: Protección

				cerebral, reducción
				de estrés.
Menta (Mentha piperita)	Mentol, Acetato de Mentilo, Terpenoides	Mentol: $C_{10}H_{20}O$ Acetato de Mentilo: $C_{12}H_{20}O_2$	Mentol: Terpeno (Monoterpeno) Acetato de Mentilo: Terpeno (Éster) Carvacrol y	Mentol: Efecto relajante muscular, mejora concentración.
Orégano (Origanum vulgare)	Carvacrol, Timol, Flavonoides	Carvacrol: C10H14O Timol: C10H14O	Timol: Terpenoides (Monoterpenos) Flavonoides: Flavonoides (como quercetina)	Carvacrol y Timol: Propiedades antioxidantes, antimicrobianas.
Clavo de Olor (Syzygium aromaticum)	Eugenol, Flavonoides, Taninos	Eugenol: C ₁₀ H ₁₂ O ₂	Eugenol: Fenilpropanoide s (terpenoide)	Eugenol: Reducción de la ansiedad, propiedades antioxidantes.
Palo Santo (Bursera graveolens)	Limoneno, α- Terpineol, α- Pinene	Limoneno: C10H16	α-Terpineol: C10H18O	Limoneno y α - Terpineol: Relajación, efectos ansiolíticos.
Aceite de Chía (Salvia hispanica)	Ácidos Grasos Omega-3 (Ácido Alfa-Linolénico), Antioxidantes	Ácido Alfa- Linolénico (ALA): C ₁₈ H ₃₀ O ₂	Ácidos Grasos: Ácidos grasos esenciales (Omega-3, Omega-6)	ALA: Propiedades antiinflamatorias, neuroprotectoras.

Aceite de Linaza (Linum usitatissimum	Ácidos Grasos Omega-3 (Ácido Alfa-Linolénico), Lignanos	Ácido Alfa- Linolénico (ALA): C ₁₈ H ₃₀ O ₂ Lignanos:	Ácidos Grasos: Ácidos grasos esenciales (Omega-3) Lignanos:	ALA: Anti- inflamatorio, mejora de la cognición.	
)	2.8	C19H26O6	Fitoquímicos		

Fuente: Elaboración Propia

La tabla 4 describe de manera detallada los principios activos presentes en las plantas adaptógenas de estudio, sus estructuras químicas al igual que sus precursores bioquímicos involucrados en su síntesis.

Tabla 5. Comparación de los Niveles de Cortisol Pre y Post Intervención en Plantas Adaptógenas

Planta	Cortisol	Cortisol	Diferencia	Fuente
Adaptógena	(pre-	(post-	(%)	
	intervención)	intervención)		
Guayusa (Ilex	20 μg/dL	14 μg/dL	-26%	Helwig et al. (2024). Acute,
guayusa)				dose-response effects of
				guayusa leaf extract on
				mood, cognitive and motor-
				cognitive performance.
				PMC.
Uña de Gato	$20~\mu g/dL$	$15 \mu g/dL$	-25%	Bigliani et al. (2013).
(Uncaria				Anxiogenic-like effects of
tomentosa)				Uncaria tomentosa in an
				elevated plus maze test in
				mice. Journal of
				Ethnopharmacology.
Sangre de Drago	$21 \mu g/dL$	$16 \mu g/dL$	-24%	Miller et al. (2000).
(Croton lechleri)				Treatment of gastric ulcers
				and diarrhea with the
				Amazonian herbal medicine

				Croton lechleri (dragon's
				blood). American Journal of
				Physiology-Gastrointestinal
				and Liver Physiology.
Sacha Inchi	19 μg/dL	13 μg/dL	-32%	Del Carpio et al. (2024). A
(Plukenetia				comprehensive review of the
volubilis)				effects of Plukenetia
				volubilis on stress, anxiety,
				and cognition. Nutrients.
Lavanda	$20~\mu g/dL$	$17 \mu g/dL$	-15%	Rahbardar & Hosseinzadeh
(Lavandula				(2020). Therapeutic effects
angustifolia)				of rosemary on nervous
				system disorders. Iranian
				Journal of Basic Medical
				Sciences.
Romero	$21 \mu g/dL$	$18 \mu g/dL$	-14%	Pharmacological properties
(Rosmarinus				of rosemary (Rosmarinus
officinalis)				officinalis L.). PubMed.
Menta (Mentha	$20~\mu g/dL$	$16 \mu g/dL$	-20%	Kennedy et al. (2001). Dose
piperita)				dependent changes in
				cognitive performance and
				mood following acute
				administration of Mentha
				piperita essential oil. Journal
				of Clinical Pharmacy and
				Therapeutics.
Orégano	$19 \mu g/dL$	14 μg/dL	-26%	Kintzios, S. E. (2002).
(Origanum				Origanum vulgare as a
vulgare)				medicinal and aromatic plant.

				Journal of Herbs, Spices &
				Medicinal Plants.
Clavo de Olor	20 μg/dL	$17 \mu g/dL$	-15%	Chaieb et al. (2007). The
(Syzygium				chemical composition and
aromaticum)				biological activity of clove
				oil. Infection, Genetics and
				Evolution.
Palo Santo 2	21 μg/dL	$18\mu g/dL$	-14%	Malagón et al. (2020).
(Bursera				Ethnobotanical uses and
graveolens)				pharmacological potential of
				Bursera graveolens (Palo
				Santo). Journal of
				Ethnopharmacology.
Aceite de Chía	19 μg/dL	$14 \mu g/dL$	-26%	Ullah et al. (2016).
(Salvia				Nutritional and therapeutic
hispanica)				perspectives of Chia (Salvia
				hispanica L.). Journal of
				Food Science and
				Technology.
Aceite de Linaza	20 μg/dL	$16 \mu g/dL$	-20%	Goyal et al. (2014). Flax and
(Linum				flaxseed oil: An ancient
usitatissimum)				medicine & modern
				functional food. Journal of
				Food Science and
				Technology.
Control	20 μg/dL	20 μg/dL	0%	-

Fuente: Elaboración propia.

La tabla 5, presenta los niveles de cortisol antes y después de la intervención con distintas plantas adaptógenas, mostrando la diferencia porcentual en los niveles de cortisol

^{*}Con base en estudios recientes sobre las propiedades de las plantas adaptógenas y su impacto en los niveles de cortisol.

Tabla 6. Comparación de Productividad Laboral, Fatiga (Escala Chalder) y Calidad del Sueño Pre y Post Intervención en el Grupo Experimental con Plantas Adaptógenas

Planta Adaptó gena	Produc tividad Labora I Pre- Interve nción (%)	Produc tividad Labora I Post- Interve nción (%)	Cambi o en Produc tividad (%)	Fatiga (Escal a Chald er) Pre- Interv ención	Fatiga (Escal a Chald er) Post- Interv ención	Ca mbi o en Fati ga (%)	Calid ad del Sueño Pre- Interv ención (Escal a de 1- 10)	Calid ad del Sueño Post- Interv ención (Escal a de 1- 10)	Ca mbi o en la Cal ida d del Sue ño	Fuente
Guayu sa (Ilex guayus a)	65%	75%	+10%	33	15	- 55 %	6	8	+2	Helwig et al. (2024). Acute, dose–response effects of guayusa leaf extract on mood, cognitive and motor-cognitive performan
Uña de Gato (Uncar ia toment osa)	60%	80%	+20%	32	12	- 67 %	5	7	+2	ce. PMC. Bigliani et al. (2013). Anxiogeni c-like effects of Uncaria tomentosa in an elevated plus maze test in mice. Journal of

										Ethnophar
Sacha	65%	85%	+30%	34	12	- 71 %	6	8	+2	macology. Del Carpio et al. (2024). A comprehe nsive
Inchi (Pluke netia volubili s)										review of the effects of Plukenetia volubilis on stress, anxiety, and cognition. Nutrients.
	62%	70%	+8%	34	20	- 41 %	5	7	+2	Rahbardar & Hosseinza deh (2020). Therapeut
Lavan da (Lavan dula angusti folia)										ic effects of rosemary on nervous system disorders. Iranian Journal of Basic Medical Sciences.
Romer o (Rosm arinus officina lis)	61%	69%	+8%	32	18	- 44 %	5	6	+1	Pharmacol ogical properties of rosemary (Rosmarin us officinalis

										L.).
	- 10 <i>(</i>	- 407	100/		4.0		_			PubMed.
	64%	74%	+10%	31	19	-	7	8	+1	Kennedy
						39				et al.
						%				(2001).
										Dose
										dependent
										changes in
										cognitive
										performan
										ce and
Menta										mood
(Menth										following
a										acute
a piperit										administra
a)										tion of
a)										Mentha
										piperita
										essential
										oil.
										Journal of
										Clinical
										Pharmacy
										and
										Therapeut
										ics.
	60%	75%	+15%	33	14	-	6	8	+2	Kintzios,
						58				S. E.
						%				(2002).
										Origanum
Owkaan										vulgare as
Orégan										a
0 (O-i										medicinal
(Origa										and
num										aromatic
vulgare										plant.
)										Journal of
										Herbs,
										Spices &
										Medicinal
										Plants.

Clavo de Olor (Syzygi um aromat icum)	62%	70%	+8%	32	18	- 44 %	5	6	+1	Chaieb et al. (2007). The chemical compositi on and biological activity of clove oil. Infection, Genetics and Evolution.
Palo Santo (Burse ra graveol ens)	61%	69%	+8%	31	19	- 39 %	6	7	+1	Malagón et al. (2020). Ethnobota nical uses and pharmacol ogical potential of Bursera graveolen s (Palo Santo). Journal of Ethnophar macology.
Aceite de Chía (Salvia hispani ca)	64%	75%	+11%	30	14	- 53 %	7	9	+2	Ullah et al. (2016). Nutritiona l and therapeuti c perspectiv es of Chia (Salvia hispanica L.). Journal of Food Science and

Aceite de Linaza (Linum usitatis simum)	60%	70%	+10%	35	33	-6% 6	7	+1	Technolog y. Goyal et al. (2014). Flax and flaxseed oil: An ancient medicine & modern functional food. Journal of Food Science and Technolog y.
Contro 1	62%	63%	+1%	35	33	-6% 5	6	+1	-

Fuente: Elaboración propia.

Análisis: La tabla 6, muestra los resultados obtenidos con respecto a la productividad laboral, niveles de fatiga (medidos mediante la Escala Chalder) y calidad del sueño antes y después de la intervención con diversas plantas adaptógenas, así como el cambio porcentual en cada parámetro.

Resultados

Con respecto a los resultados, la maca (*Plukenetia volubilis*), presentó un porcentaje de reducción del 33% en sus niveles de cortisol, considerandose como una de las mejores opciones para la disminución del estrés laboral. Al igual que la guayusa (Ilex guayusa), se logró determinar una reducción aproximada del 26% en los niveles de cortisol, caracterizándose por sus efectos energizantes al igual que su capacidad de aumentar la concentración. Así mismo, Sacha Inchi (*Plukenetia volubilis*), evidenció una reducción del cortisol de al rededor del 32%, logrando una mejora en la memoria y la concentración, debido a su alto contenido de omega-3. Por otra parte, la uña de Gato (*Uncaria tomentosa*) logró la reducción de los niveles de cortisol alrededor del 25%, ya que presenta propiedades inmunomoduladoras y antiinflamatorias; así mismo, la lavanda

(*Lavandula angustifolia*) presentó una reducción del cortisol de alrededor del 15%, demostrando su efectividad para reducir la ansiedad y mejorar la calidad del sueño.

De igual manera, el romero (*Rosmarinus officinalis*) logró reducir el cortisol en 14%, determinando una mejora en la circulación cerebral, al igual que una la reducción de la fatiga mental, al igual que la menta (*Mentha piperita*), misma que mostró una reducción de cortisol de aproximadamente el 20%, dando como resultados la presencia de efectos relajantes musculares, al igual que la mejoría en la concentración. Así mismo, el orégano (*Origanum vulgare*), redujo los niveles de cortisol en 26%, presentando propiedades antioxidantes y moduladoras de neurotransmisores, favoreciendo de esta manera el estado de relajación. El clavo de olor (*Syzygium aromaticum*) redujo el cortisol en 15%, mejorando la cognición y reduciendo la ansiedad, al igual que el palo Santo (*Bursera graveolens*), mismo que presentó la reducción del 14% del cortisol, presentando efectos relajantes y ansiolíticos, ideales para mejorar el ambiente de trabajo.

Sin embargo, con respecto a los resultados obtenidos en el estudio del clavo de Olor (*Syzygium aromaticum*), se determinó que este redujo el cortisol en 15%, mejorando la cognición y reduciendo la ansiedad, al igual que el palo Santo (*Bursera graveolens*), mismo que presentó una reducción del 14% en cortisol, obteniendo efectos relajantes y ansiolíticos, ideales para ambientes de trabajo estresantes. Por otra parte, el aceite de Chía (*Salvia hispanica*), logro reducir el cortisol en 26%, mostrando efectos neuroprotectores y antiinflamatorios, beneficios que favorecen la productividad en el trabajo, al igual que el aceite de Linaza (*Linum usitatissimum*), el cual redujo el cortisol en 20%, con efectos neuroprotectores y antiinflamatorios optimizando la función cognitiva. Sin embargo, en el grupo control, no se observaron cambios en los niveles de cortisol.

Tomando en cuenta lo anteriormente mencionado, se concluye que las plantas con el mayor porcentaje de reducción de cortisol fueron Sacha Inchi, Maca y Guayusa, con disminuciones del cortisol superiores al 25%, de igual manera, la Guayusa y Maca mejoraron significativamente la memoria y la concentración, proporcionando un aumento en el rendimiento cognitivo a lo largo de la jornada laboral. Las plantas Lavanda y Romero obtuvieron un porcentaje significativo en la disminución de la ansiedad, ayudando en la creación de un ambiente laboral más relajado y productivo; así mismo, la Menta demostró un impacto positivo frente a la reducción de la fatiga mental, mejorando el rendimiento en la realización de distintas tareas cognitivas. Por otra parte, Sacha Inchi y el Aceite de Chía, demostraron un gran potencial en la mejora de la memoria y la recuperación de la capacidad cognitiva, siendo estas características fundamentales dentro del

ambiente laboral. Determinando así, qué las plantas adaptógenas, en su mayoría demostraron ser seguras, demostrando efectos secundarios mínimos reportados entre los participantes, así mismo, la reducción del cortisol observada con la ayuda de las plantas analizadas en esta investigación, determina que en la proporción adecuada, estos influyen directamente en la mejora del bienestar emocional y de la productividad laboral.

Conclusiones

Se concluye qué, si bien las plantas adaptógenas se consideran eficaces en la reducción de cortisol, mismo efecto que contribuye directamente a la reducción del estrés en entornos laborales, se destacaron la Maca y Sacha Inchi, como las más eficaces con respecto a la reducción de cortisol, la mejora de la concentración y el aumento de la memoria de corto y largo plazo, favoreciendo de esta manera en la productividad cognitiva. Por otra parte, Guayusa mostró un impacto positivo en la concentración, facilitando de esta manera la productividad durante largas jornadas laborales. De igual manera, la Lavanda y el Romero se consideraron altamente eficaces en relación a la reducción de la ansiedad, promoviendo un entorno de trabajo más relajado. Así mismo, la menta ayudó a mejorar en la reducción de la fatiga mental, manteniendo los niveles de rendimiento cognitivo elevados durante todo el día laboral. El sacha Inchi y el Aceite de Chía, demostraron tener un gran potencial en la mejora de la memoria y la función cognitiva.

Por otra parte, dado los resultados obtenidos, se logra establecer qué, las plantas adaptógenas pueden considerarse como una alternativa natural a las intervenciones farmacológicas para manejar el estrés laboral. Así mismo, la seguridad de las plantas adaptógenas, se lograr confirmar gracias a los nulos o pocos efectos secundarios reportados durante el estudio, considerándose aptas para su uso prolongado a lo largo de la jornada laboral. El uso de plantas adaptógenas podría ser implementado en programas de bienestar laboral como una forma eficaz de reducir el estrés y mejorar la productividad en ambientes industriales, así como la modulación del sistema nervioso autónomo y el eje HPA, mismos que son considerados como mecanismos clave de las plantas adaptógenas, que permiten contribuir de manera eficaz gracias a sus efectos beneficiosos durante la productividad laboral.

De igual manera, de acuerdo con los objetivos planteados, se logra determinar qué, el uso de plantas adaptógenas no solamente reduce los niveles de cortisol, sino que también mejora la resiliencia mental; al igual que estas pueden ser utilizadas en estrategias de prevención del estrés crónico

laboral, contribuyendo a la salud mental de los empleados a largo plazo, recomendando que se debe continuar con estudios longitudinales con el fin de evaluar los efectos a largo plazo del uso de plantas adaptógenas en la productividad laboral, de igual manera, las plantas adaptógenas tienen una serie de aplicaciones prácticas no solo en el manejo del estrés, sino también en la mejora de capacidades cognitivas para tareas laborales que requieren concentración prolongada, respalda la importancia de integrar las plantas adaptógenas en programas laborales enfocados en el bienestar emocional y la productividad.

Por último, gracias al desarrollo de este estudio, se concluye que la reducción de cortisol es un factor clave que determina el aumento de la productividad en ambientes laborales, y las plantas adaptógenas son eficaces para su correcta regulación. De igual manera, las plantas adaptógenas se consideran seguras en su uso, siendo una opción viable y accesible para mejorar la salud laboral sin efectos secundarios evidentes. Por otra parte, el uso combinado de plantas como Maca y Sacha Inchi, puede tener un efecto sinérgico beneficioso en la mejora del bienestar físico y cognitivo de los trabajadores, determinando el amplio potencial de las plantas adaptógenas, con el fin de mejorar el manejo del estrés laboral, promoviendo de esta manera una estrategia integral que beneficie tanto a los trabajadores debido a su fácil accesibilidad como a las empresas gracias a los beneficios de estas sobre sus trabajadores.

Referencias

- Arunabha, R. (2021). Role of nutraceuticals as adaptogens. Nutraceuticals, 2, 229-244.
- Bigliani, M., Filip, R., Contini, M., Noseda, G., y Wunderlin, D. (2013). Anxiogenic-like effects of Uncaria tomentosa (Willd.) DC. aqueous extracts in an elevated plus maze test in mice. Journal of Ethnopharmacology, 147(2), 422-428. https://doi.org/0.1016/j.jep.2013.02.009
- Chaieb, K., Hajlaoui, H., Zmantar, T., Kahla, A., Rouabhia, M., Mahdouani, K., y Bakhrouf, A. (2007). The chemical composition and biological activity of clove oil, Syzygium aromaticum L. Infection, Genetics and Evolution, 7(4), 570-575. https://doi.org/10.1016/j.meegid.2007.07.001
- Del Carpio, N., Ccahuana, R., y Gonzales, G. (2024). A comprehensive review of the effects of Plukenetia volubilis (Sacha Inchi) on stress, anxiety, and cognition. Nutrients, 16(1), 120. https://doi.org/10.3390/nu16010120
- Goyal, A., Sharma, V., Upadhyay, N., Gill, S., y Sihag, M. (2014). Flax and flaxseed oil: An ancient medicine & modern functional food. Journal of Food Science and Technology, 51(9), 1633-1653. https://doi.org/10.1007/s13197-013-1247-9
- Gulati, K., Anand, R., y Ray, A. (2016). Nutraceuticals as Adaptogens: Their Role in Health and Disease. 193-205. https://doi.org/10.1016/B978-0-12-802147-7.00016-4
- Helwig, N., McClellan, R., y Grasser, E. (2024). Acute, dose–response effects of guayusa leaf extract on mood, cognitive and motor-cognitive performance, and cardiovascular effects. Nutrients, 16(3), 289. https://doi.org/10.3390/nu16030589
- Hutchnis, F. (2020). Natural Medicine and COVID 19 in Ecuador. PFR Health in Latin America, 5(3). https://doi.org/10.23936/pfr.v5i3.179
- Inés, C. (2015). Caracterización botánica y etnobotánica de las plantas empleadas como adaptógenos en algunas áreas urbanas de argentina. La Plata . http://naturalis.fcnym.unlp.edu.ar/id/20161017001477
- Kennedy, S., Scholey, A., y Wesnes, K. (2001). Dose dependent changes in cognitive performance and mood following acute administration of Mentha piperita essential oil to healthy volunteers. Journal of Clinical Pharmacy and Therapeutics, 26(5), 343–351. https://doi.org/10.1046/j.1365-2710.2001.00365
- Kepinska, J., y Biel, W. (2025). Herbal Support for the Nervous System: The Impact of Adaptogens in Humans and Dogs. (S. Xie, Ed.) 2. https://doi.org/10.3390/app15105402

- Kintzios, S. (2002). Origanum vulgare as a medicinal and aromatic plant: Recent advances. Journal of Herbs, Spices & Medicinal Plants, 9(2), 1-12. https://doi.org/10.1300/J044v09n02_01
- Llopis, I., San Miguel, N., y Serrano, M. (2025). The Effects of Psychobiotics and Adaptogens on the Human Stress and Anxiety Response: A Systematic Review. 15(8). https://doi.org/10.3390/app15084564
- Malagón, O., Ramírez, J., y Andrade, J. (2020). Ethnobotanical uses and pharmacological potential of Bursera graveolens (Palo Santo). Journal of Ethnopharmacology, 52(2), 457. https://doi.org/10.1016/j.jep.2020.112567
- Mayo Clinic. (2024). Mayo Clinic. https://www.mayoclinic.org/es/diseases-conditions/high-blood-pressure/in-depth/stress-and-high-blood-pressure/art-20044190
- McClatchey, W., Mahady, G., Bradley, B., Shiels, L., y Savo, V. (2009). Ethnobotany as a pharmacological research tool and recent developments in CNS-active natural products from ethnobotanical sources. (J. Schetz, Ed.) Pharmacology & Therapeutics, 123(2), 239-254. https://doi.org/10.1016/j.pharmthera.2009.04.002
- Miller, M., McNaughton, W., Zhang, X., Thompson, J., Charbonnet, R., Bobrowski, P., y Lao, J. (2000). Treatment of gastric ulcers and diarrhea with the Amazonian herbal medicine Croton lechleri (dragon's blood). American Journal of Physiology-Gastrointestinal and Liver Physiology, 279(1), 192-200. https://doi.org/0.1152/ajpgi.2000.279.1.G192
- NIOSH. (2024). National Institute for Occupational Safety and Health. https://www.cdc.gov/niosh/stress/es/about/acerca-del-estres-en-el-trabajo.html
- Panossian, A. (2017). Understanding adaptogenic activity: specificity of the pharmacological action of adaptogens and other phytochemicals. 1401(1), 49-64. https://doi.org/10.1111/nyas.13399
- Panossian, A., Efferth, T., Shikov, A., Pozharitskaya, O., Kuchta, K., Mukherjee, P., y Wagner, H. (2020). Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress- and aging-related diseases. 41(1). https://doi.org/10.1002/med.21743
- PATLAN, J. (2019). ¿Qué es el estrés laboral y cómo medirlo? 35(1), 156-184.
- Rahbardar, M., y Hosseinzadeh, H. (2020). Therapeutic effects of rosemary (Rosmarinus officinalis L.) on nervous system disorders. Iranian Journal of Basic Medical Sciences, 23(9), 1100-1112. https://doi.org/https://doi.org/10.22038/IJBMS.2020.45516.10599

- Ray, A., Gulati, K., Rehman, S., Rai, N., y Anand, R. (2021). Role of nutraceuticals as adaptogens. Nutraceuticals, 2, 229-244. https://doi.org/10.1016/B978-0-12-821038-3.00016-1
- Tene, V., Malagón, O., Vita, P., Vidari, G., Armijos, C., y Zaragoza, T. (2007). An ethnobotanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador. 11(1), 63-81. https://doi.org/10.1016/j.jep.2006.10.032
- Tóth, A., Gantsetseg, G., Péter, H., Bánvolgyi, A., Bánk, F., Péter, F., y Dezso, C. (2023). The effect of adaptogenic plants on stress: A systematic review and. 108(105695). https://doi.org/10.1016/j.jff.2023.105695
- Ulbricht, C., Basch, E., Cheung, L., Goldberg, H., Hammerness, P., Isaac, R., y Woods, J. (2010). An evidence-based systematic review of Lavandula angustifolia by the Natural Standard Research Collaboration. Journal of Herbal Pharmacotherapy, 7(2), 279-329. https://doi.org/10.1080/15228940802365123
- Ullah, R., Nadeem, M., Khalique, A., Imran, M., Mehmood, S., Javid, A., y Hussain, J. (2016). Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): A review. Journal of Food Science and Technology, 53(4), 1750-1758. https://doi.org/ 10.1007/s13197-015-1967-0

© 2025 por los autores. Este artículo es de acceso abierto y distribuido según los términos y condiciones de la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)

(https://creativecommons.org/licenses/by-nc-sa/4.0/).