Obtención de consorcios microbianos benéficos y su incidencia en la población microbiana nativa de la rizósfera de plantas de fresa (FRAGARIA SP.)

Manuel Salvador Alvarez-Vera, Javier Oswaldo Soto-Valenzuela, Jorge Oswaldo Quevedo -Vázquez, Lesi Vanessa Giler -Escandón

Resumen


El suelo es un medio complejo donde las comunidades microbianas cumplen funciones importantes para el desarrollo de las plantas. El objetivo de esta investigación fue obtener consorcios microbianos benéficos (CMBs) de especies vegetales y evaluar su incidencia sobre la población microbiana nativa de la rizósfera de plantas de fresa (Fragaria sp.). Se obtuvieron CMBs provenientes de 12 especies vegetales locales, a nivel de laboratorio se determinaron las UFC.ml-1 en solución de levaduras, Bacillus spp., Lactobacillus spp. Actinomicetos y Pseudomonas spp. Se evaluó la capacidad proteolítica y el nivel de antagonismo ante Fusarium sp.  de las cepas de Bacillus spp. y Lactobacillus spp. Se seleccionaron tres consorcios microbianos y se inocularon en el suelo, luego se plantaron fresas. Se determinó que la población microbiana nativa de la rizósfera cambia de forma heterogénea con la inoculación de microorganismos benéficos, lo cual estaría relacionado con las características de cada consorcio microbiano, su capacidad de adaptación y las condiciones existentes en el nicho rizosférico. La inoculación de CMBs es positiva ya que mediante varios mecanismos benefician el desarrollo de las plantas, es necesario abordar investigaciones dirigidas a estudiar las interacciones microbianas entre los microorganismos nativos frente a inoculados en el suelo, que en su mayoría son desconocidas.


Palabras clave


: Microorganismos benéficos; suelo; raíz; plantas; antagonismo.

Texto completo:

PDF HTML XML

Referencias


Ahmad, M., Pataczek, L., Hilger, T. H., Zahir, Z. A., Hussain, A., Rasche, F., … Solberg, S. (2018). Perspectives of Microbial Inoculation for Sustainable Development and Environmental Management. Frontiers in Microbiology, 9, 1–26. https://doi.org/10.3389/fmicb.2018.02992

Alori, E. T., Dare, M. O., & Babalola, O. O. (2017). Microbial Inoculants for Soil Quality and Plant Health. Sustainable Agriculture Reviews, 12, 281–307. https://doi.org/10.1007/978-94-007-5961-9

Alvarez, M., Tucta, F., Quispe, E., & Meza, V. (2018). Incidencia de la inoculación de microorganismos benéficos en el cultivo de fresa (Fragaria sp.). Scientia Agropecuaria, 9(1), 33–42.

Aragón, W., Reina-Pinto, J. J., & Serrano, M. (2017). The intimate talk between plants and microorganisms at the leaf surface. Journal of Experimental Botany, 68(19), 5339–5350. https://doi.org/10.1093/jxb/erx327

Bender, S. F., Wagg, C., & Heijden, M. G. A. Van Der. (2016). An Underground Revolution : Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends in Ecology & Evolution, 31(6), 440–452. https://doi.org/10.1016/j.tree.2016.02.016

Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13(66), 1–10. https://doi.org/10.1186/1475-2859-13-66

Delmont, T. O., Francioli, D., Jacquesson, S., Laoudi, S., Mathieu, A., Nesme, J., … Vogel, T. M. (2014). Microbial community development and unseen diversity recovery in inoculated sterile soil. Biology and Fertility of Soils, 50(7), 1069–1076. https://doi.org/10.1007/s00374-014-0925-8

Govindasamy, V., George, P., Raina, S. K., Kumar, M., Rane, J., & Annapurna, K. (2018). Plant-Associated Microbial Interactions in the Soil Environment: Role of Endophytes in Imparting Abiotic Stress Tolerance to Crops. In Advances in Crop Environment Interaction (pp. 245–284). https://doi.org/10.1007/978-981-13-1861-0_10

Higa, T., & Parr, J. F. (1994). Beneficial and effective microorganisms for a sustainable agriculture and environment. International Nature Farming Research Center, (808), 1–16. Retrieved from http://www.emro-asia.com/data/66.pdf

Igiehon, N. O., & Babalola, O. O. (2018). Below-ground-above-ground Plant-microbial Interactions: Focusing on soybean, rhizobacteria and mycorrhizal fungi. The Open Microbiology Journal, 12(1), 261–279. https://doi.org/10.2174/1874285801812010261

Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions. Frontiers in Plant Science, 8, 1–19. https://doi.org/10.3389/fpls.2017.01617

Koch, A., McBratney, A., Adams, M., Field, D., Hill, R., Crawford, J., … Zimmermann, M. (2013). Soil Security: Solving the Global Soil Crisis. Global Policy, 4(4), 434–441. https://doi.org/10.1111/1758-5899.12096

Lal, R. (2015). Restoring soil quality to mitigate soil degradation. Sustainability, 7, 5875–5895. https://doi.org/10.3390/su7055875

Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the Phyllosphere. Microbiology of the Phyllosphere, 69(4), 1875–1883. https://doi.org/10.1128/AEM.69.4.1875

Meena, V. S., Meena, S. K., Verma, J. P., Kumar, A., Aeron, A., Mishra, P. K., … Dotaniya, M. L. (2017). Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecological Engineering, 107, 8–32. https://doi.org/10.1016/j.ecoleng.2017.06.058

Mohammadi, K., & Sohrabi, Y. (2012). Bacterial Biofertilizers for Sustainable Crop Production: A Review. ARPN Journal of Agricultural and Biological Science, 7(5), 307–316.

Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32, 429–448. https://doi.org/10.1016/j.biotechadv.2013.12.005

Nannipieri, P., Ascher, J., Ceccherini, M., Landi, L., Pietramellara, G., & Renella, G. (2017). Microbial diversity and soil functions. European Journal of Soil Science, 68(1), 12–26.

Nihorimbere, V., Ongena, M., Smargiassi, M., & Thonart, P. (2011). Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol. Agron. Soc. Environ., 15(2), 327–337.

Pereg, L., & McMillan, M. (2015). Scoping the potential uses of beneficial microorganisms for increasing productivity in cotton cropping systems. Soil Biology and Biochemistry, 80, 349–358. https://doi.org/10.1016/j.soilbio.2014.10.020

Pereira, P., Bogunovic, I., Muñoz-Rojas, M., & Brevik, E. C. (2017). Soil ecosystem services, sustainability, valuation and management. Current Opinion in Environmental Science & Health, 5, 7–13. https://doi.org/10.1016/j.coesh.2017.12.003

Pieterse, C. M. J., Jonge, R. de, & Berendsen, R. L. (2016). Spotlight The soil-borne supremacy. Trends in Plant Science, 21(3), 171–173. https://doi.org/10.1016/j.tplants.2016.01.018

Rashid, M. I., Mujawar, L. H., Shahzad, T., Almeelbi, T., Ismail, I. M. I., & Oves, M. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research, 183, 26–41. https://doi.org/10.1016/j.micres.2015.11.007

Rossmann, M., Sarango-Flores, S. W., Chiaramonte, J. B., Kmit, M. C. P., & Mendes, R. (2017). Plant Microbiome: Composition and Functions in Plant Compartments. The Brazilian Microbiome, pp. 7–20. https://doi.org/10.1007/978-3-319-59997-7

Schulz, S., Brankatschk, R., Dümig, A., Kögel-Knabner, I., Schloter, M., & Zeyer, J. (2013). The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences, 10, 3983–3996. https://doi.org/10.5194/bg-10-3983-2013

Singh, J. S. (2015). Microbes: The chief ecological engineers in reinstating equilibrium in degraded ecosystems. Agriculture, Ecosystems and Environment, 203, 80–82. https://doi.org/10.1016/j.agee.2015.01.026

Singh, J. S., Pandey, V. C., & Singh, D. P. (2011). Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems and Environment, 140, 339–353. https://doi.org/10.1016/j.agee.2011.01.017

Thakur, S., Mehta, K., & Sekhar, R. S. (2015). Effect of GA3 and plant growth promoting rhizobacteria (PGPR) on growth , yield and fruit quality of strawberry, Fragaria x ananassa Duch cv Chandler. International Journal of Advanced Research, 3(11), 312–317.

Trabelsi, D., & Mhamdi, R. (2013). Microbial Inoculants and Their Impact on Soil Microbial Communities : A Review. BioMed Research International, 2013, 1–11. https://doi.org/http://dx.doi.org/10.1155/2013/863240

Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto, I., … Whitbread, A. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 151, 53–59. https://doi.org/10.1016/j.biocon.2012.01.068

Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Van, A. Le, & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. New Phytologist, 206, 1196–1206.

Vassilev, N., & Mendes, G. de O. (2018). Solid-State Fermentation and Plant-Beneficial Microorganisms. Current Developments in Biotechnology and Bioengineering, 435–450. https://doi.org/10.3390/su9020224

Vogel, H.-J., Bartke, S., Daedlow, K., Helming, K., Kögel-Knabner, I., Lang, B., … Wollschläger, U. (2018). A systemic approach for modeling soil functions. Soil, 4(1), 83–92. https://doi.org/10.5194/soil-4-83-2018

Webb, N. P., Marshall, N. A., Stringer, L. C., Reed, M. S., Chappell, A., & Herrick, J. E. (2017). Land degradation and climate change: building climate resilience in agriculture. Frontiers in Ecology and the Environment, 15(8), 450–459. https://doi.org/10.1002/fee.1530

Wezel, A., Casagrande, M., Celette, F., Vian, J. F., Ferrer, A., & Peigné, J. (2014). Agroecological practices for sustainable agriculture. A review. Agronomy for Sustainable Development, 34, 1–20. https://doi.org/10.1007/s13593-013-0180-7

Whipps, J. M., Hand, P., Pink, D., & Bending, G. D. (2008). Phyllosphere microbiology with special reference to diversity and plant genotype. Journal of Applied Microbiology, 105(6), 1744–1755. https://doi.org/10.1111/j.1365-2672.2008.03906.x

Yadav, I., Singh, J., Meena, B., Singh, P., Meena, S., Neware, S., & Patidar, D. K. (2017). Strawberry Yield and Yield Attributes after Application of Plant Growth Regulators and Micronutrients on Cv . Winter Dawn. Chemical Science Review and Letters, 6(21), 589–594.

Zhang, R., Vivanco, J. M., & Shen, Q. (2017). The unseen rhizosphere root–soil–microbe interactions for crop production. Current Opinion in Microbiology, 37, 8–14. https://doi.org/10.1016/j.mib.2017.03.008




DOI: https://doi.org/10.23857/pc.v4i11.1179

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/